• Title/Summary/Keyword: Denture Bases

Search Result 39, Processing Time 0.024 seconds

Metal base of complete denture in edentulous patient (무치악 환자에서 총의치 금속상에 대한 고찰)

  • Koo, Cheol-Ihn;Lee, Heung-Tae;Park, Chan-Ik
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.3
    • /
    • pp.197-204
    • /
    • 2002
  • Polymers are the dominant material for fabrication of denture bases. However, resin base can't fufill the patients' satisfactions completely and solve the pronunciation problem and prevent the denture fracture. In spite of many advantages, metal denture bases do not widespread in clinical practice. The main reasons are the difficulties in fabrication and additional time and cost, inability to rebase such prostheses. The use of the metal base can be one of options in complete denture treatments. This study helps, through reveiwing previous reports and literature about the metal base, metal base to be useful in the clinical application by recommend the materials, indications and advantage/disadvantage of the metal base and introduce variable designs. The clinical application of the metal base have many advantages, but the dentists have to select cases carefully and apply designs according to patient's various conditions. In conclusion, the use of the metal base can't alternate treatment of inadequate conventional complete denture. Adequate complete denture is very important for the treatment of the metal base complete denture.

Investigation of bonding properties of denture bases to silicone-based soft denture liner immersed in isobutyl methacrylate and 2-hydroxyethyl methacrylate

  • Akin, Hakan;Tugut, Faik;Mutaf, Burcu;Guney, Umit
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.2
    • /
    • pp.121-125
    • /
    • 2014
  • PURPOSE. The purpose of this study was to investigate the bonding properties of denture bases to silicone-based soft denture liners immersed in isobutyl methacrylate (iBMA) and 2-hydroxyethyl methacrylate (HEMA) for various lengths of time. MATERIALS AND METHODS. Polymethyl methacrylate (PMMA) test specimens were fabricated (75 mm in length, 12 mm in diameter at the thickest section, and 7 mm at the thinnest section) and then randomly assigned to five groups (n=15); untreated (Group 1), resilient liner immersed in iBMA for 1 minute (Group 2), resilient liner immersed in iBMA for 3 minutes (Group 3), resilient liner immersed in HEMA for 1 minute (Group 4), and resilient liner immersed in HEMA for 3 minutes (Group 5). The resilient liner specimens were processed between 2 PMMA blocks. Bonding strength of the liners to PMMA was compared by tensile test with a universal testing machine at a crosshead speed of 5 mm/min. Data were evaluated by 1-way ANOVA and post hoc Tukey-Kramer multiple comparisons tests (${\alpha}$=0.05). RESULTS. The highest mean value of force was observed in Group 3 specimens. The differences between groups were statistically significant (P<.05), except between Group 1 and Group 4 (P=.063). CONCLUSION. Immersion of silicone-based soft denture liners in iBMA for 3 minutes doubled the tensile bond strength between the silicone soft liner and PMMA denture base materials compared to the control group.

Effect of repair methods and materials on the flexural strength of 3D-printed denture base resin

  • Viotto, Hamile Emanuella do Carmo;Silva, Marcela Dantas Dias;Nunes, Thais Soares Bezerra Santos;Coelho, Sabrina Romao Goncalves;Pero, Ana Carolina
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.5
    • /
    • pp.305-314
    • /
    • 2022
  • PURPOSE. The aim of this study was to evaluate the flexural strength of a 3D-printed denture base resin (Cosmos Denture), after different immediate repair techniques with surface treatments and thermocycling. MATERIALS AND METHODS. Rectangular 3D-printed denture base resin (Cosmos Denture) specimens (N = 130) were thermocycled (5,000 cycles, 5℃ and 55℃) before and after the different repair techniques (n = 10 per group) using an autopolymerized acrylic resin (Jet, J) or a hard relining resin (Soft Confort, SC), and different surface treatments: Jet resin monomer for 180 s (MMA), blasting with aluminum oxide (JAT) or erbium: yttrium-aluminum-garnet laser (L). The control group were intact specimens. A three-point flexural strength test was performed, and data (MPa) were analyzed by ANOVA and Games-Howell post hoc test (α = 0.05). Each failure was observed and classified through stereomicroscope images and the surface treatments were viewed by scanning electron microscope (SEM). RESULTS. Control group showed the highest mean of flexural strength, statistically different from the other groups (P < .001), followed by MMA+J group. The groups with L treatment were statistically similar to the MMA groups (P > .05). The JAT+J group was better than the SC and JAT+SC groups (P < .05), but similar to the other groups (P > .05). Adhesive failures were most observed in JAT groups, especially when repaired with SC. The SEM images showed surface changes for all treatments, except JAT alone. CONCLUSION. Denture bases fabricated with 3D-printed resin should be preferably repaired with MMA+J. SC and JAT+SC showed the worst results. Blasting impaired the adhesion of the SC resin.

A COMPARATIVE EXPERIMENTAL STUDY ON THE SURFACE CHARACTERISTICS AND THE FITTNESS OF THE RESILIENT DENTURE LINES (탄성 의치상 이장재의 표면 특성 및 적합도에 관한 비교 실험 연구)

  • Lee, Soo-Back;Yoon, Chang-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.25 no.1
    • /
    • pp.137-154
    • /
    • 1987
  • The purpose of this investigation was to determine the surface characteristics and the fittness of the resilienct denture lines. Firstly, 50 samples ($2.0{\times}4.0{\times}0.3cm$) of 4 resilient lining materials (Molloplast B, Coe Super Soft, Mollosil, Coe Soft) and one conventional acrylic resin (K-33) were processed according to manufacture's direction and examined the surface characteristics by use of surface profilometer and scanning electron microscopy. Secondly, 50 identical maxillary casts were made and 50 denture bases were pro cessed of 4 resilient liners and one conventional acrylic resin and they were stored in the room temperature water bath of 1 day, 1 week, 2 weeks, 3 weeks, 4 weeks and 6 weeks after processing. The original casts were cut away 1 cm from the posterior border, the dentures were seated, and the existing space was measured at seven regions according to the storage time by use of the modified thickness guage. The results were as follows. 1. Surface roughness (Rz) were $4.00{\pm}1.60{\mu}m$ in Mollosil, $4.47{\pm}2.21{\mu}m$ in Molloplast B, $7.46{\pm}1.70{\mu}m$ in Coe Super Soft, $12.70{\pm}2.39{\mu}m$ in Coe Soft and $13.03{\pm}2.74{\mu}m$ in K-33. 2. The generation of porosity was far more active in cold-cured resilient liners (Coe Soft and Mollosil) than in heat cured resilient liners (Molloplast B, and Coe Super Soft) and conventional heat cured resin (K-33). 3. Denture bases showed the greatest discrepancy at the central portion of the posterior palatal border and the intimate contact in the buccal flange regardless of denture base materials. 4. When the denture bases were stored in the water for 1 day and 6 weeks after processing, the sum of average discrepancies in the seven regions of the denture base was the greatest in K-33 followed by Molloplast B, Mollosil, Coe Soft and Coe Super Soft but followed by Coe Soft, Molloplast B, Mollosil, Coe Super Soft in that order respectively. 5. There was not a significant difference (p>0.05) in Coe Super Soft, K-33 but there was a significant difference (P<0.01) in Molloplast B, Mollosil, Coe Soft at the amount of dimensional changes according to the storage time.

  • PDF

JAW RELATION WITH PERMANENT RECORD BASES IN THE EDENTULOUS PATIENTS (총의치 환자에 있어 Permanent record base를 이용한 악간관계 기록)

  • Heo, Yun-Seok;Shin, Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.2
    • /
    • pp.231-239
    • /
    • 1995
  • When the complete denture is made, the record base for jaw relation is divided into temporary record base and permanent record base. However, The temporary record base include some disadvantages such as, the lackness of intimate contact between model and base, the lackness of retention during the jaw relation registration, When we obtained jaw relation the permanent record bases made from heat curing resin were utilized. We could get several advantages as follows : 1. The permanent record base provided intimate contact between the model and record base. 2. In fabricating occlusal rim on record base, the dimensional change of record base was little because the permanent record base was lesser influenced to thermal change of occlusal rim than the temporary record base. 3. At the stage of jaw relation, the retention of final denture could be early checked. 4. It could be able to get more accurate registration of jaw relation because all procedure were done on the same base during the jaw relation, artificial teeth arrangement, try-in, and final denture construction. 5. Although there was an inconvenience due to double curing procedure, the shrinkage rate in resin polimerization was relatively reduced so that more dimensional stability could be taken.

  • PDF

Denture repair for elderly patients in dental laboratories: a case report (고령 환자의 기존 의치를 치과기공소에서 수리한 증례)

  • Ju-Hyoung Lee;Gyu-Heon Lee
    • Journal of Technologic Dentistry
    • /
    • v.44 no.4
    • /
    • pp.154-160
    • /
    • 2022
  • The need for repairing removable dentures has grown as the population had aged. The direct methods allow existing dentures to be repaired without interrupting their use. However, if patient compliance is low, direct methods may be challenging. Moreover, attaching an artificial tooth to a metal base is a complicated procedure because it necessitates casting a retentive element and soldering it to a metal base. This clinical report describes how to add an artificial tooth to a metal base, reline denture bases, and reestablish occlusion on relined removable dentures using indirect methods. Existing removable dentures were successfully repaired and their service life was efficiently extended using the methods described.

Adaptation accuracy and mechanical properties of various denture base resins: a review (다양한 레진 의치상의 적합도와 기계적 특성)

  • Lee, Jung-Hwan;Lee, Chung-Jae;Lee, Hae-Hyoung
    • The Journal of the Korean dental association
    • /
    • v.57 no.12
    • /
    • pp.747-756
    • /
    • 2019
  • This paper reviews the adaptation accuracy and mechanical properties of currently used denture processing systems with base resin materials and introduces the latest research on the development of antimicrobial denture base resins. Poly(methyl methacrylate) has been successfully used as a dental denture base resin material by the compress-molding method and heat polymerization for a long time, but recently, new processing techniques, injection molding-methods or fluid-resin technique are also used for fabricating denture base. However, studies indicated that there was no difference between the injectionmolding and the conventional compression-molding method in terms of adaption accuracy of denture base. The fluid-resin fabrication and one injection-molding systems exhibited better adaptation accuracy than the other processing methods. Resin denture bases in the oral cavity may undergo midline fractures due to flexural fatigue from repeated masticatory loading. For those patients, impact resistant denture base resins are recommended to prevent denture fracture during service. Thermoplastic denture base resins can be helpful for patients suffering from allergic reaction to resin monomers with a soft-fit, however, thermoplastic resins with low stiffness can irritate gum tissues and accelerate abnormal alveolar ridge resorption. Moreover, due to low chemical durability in oral cavity, those should be used for a limited period of time.

  • PDF

In vitro comparison of two different materials for the repair of urethan dimethacrylate denture bases

  • Cilingir, Altug;Bilhan, Hakan;Geckili, Onur;Sulun, Tonguc;Bozdag, Ergun;Sunbuloglu, Emin
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.4
    • /
    • pp.396-401
    • /
    • 2013
  • PURPOSE. The purpose of this in vitro study was to investigate the flexural properties of a recently introduced urethane dimethacrylate denture base material (Eclipse) after being repaired with two different materials. MATERIALS AND METHODS. Two repair groups and a control group consisting of 10 specimens each were generated. The ES group was repaired with auto-polymerizing polymer. The EE group was repaired with the Eclipse. The E group was left intact as a control group. A 3-point bending test device which was set to travel at a crosshead speed of 5 mm/min was used. Specimens were loaded until fracture occurred and the mean displacement, maximum load, flexural modulus and flexural strength values and standard deviations were calculated for each group and the data were statistically analyzed. The results were assessed at a significance level of P<.05. RESULTS. The mean "displacement", "maximum load before fracture", flexural strength" and "flexural modulus" rates of Group E were statistically significant higher than those of Groups ES and EE, but no significant difference (P>.05) was found between the mean values of Group ES and EE. There was a statistically significant positive relation (P<.01) between the displacement and maximum load of Group ES (99.5%), Group EE (94.3%) and Group E (84.4%). CONCLUSION. The more economic and commonly used self-curing acrylic resin can be recommended as an alternative repair material for Eclipse denture bases.

Analysis of the trueness and precision of complete denture bases manufactured using digital and analog technologies

  • Leonardo Ciocca;Mattia Maltauro;Valerio Cimini;Lorenzo Breschi;Angela Montanari;Laura Anderlucci;Roberto Meneghello
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.1
    • /
    • pp.22-32
    • /
    • 2023
  • PURPOSE. Digital technology has enabled improvements in the fitting accuracy of denture bases via milling techniques. The aim of this study was to evaluate the trueness and precision of digital and analog techniques for manufacturing complete dentures (CDs). MATERIALS AND METHODS. Sixty identical CDs were manufactured using different production protocols. Digital and analog technologies were compared using the reference geometric approach, and the Δ-error values of eight areas of interest (AOI) were calculated. For each AOI, a precise number of measurement points was selected according to sensitivity analyses to compare the Δ-error of trueness and precision between the original model and manufactured prosthesis. Three types of statistical analysis were performed: to calculate the intergroup cumulative difference among the three protocols, the intergroup among the AOIs, and the intragroup difference among AOIs. RESULTS. There was a statistically significant difference between the dentures made using the oversize process and injection molding process (P < .001), but no significant difference between the other two manufacturing methods (P = .1227). There was also a statistically significant difference between the dentures made using the monolithic process and the other two processes for all AOIs (P = .0061), but there was no significant difference between the other two processes (P = 1). Within each group, significant differences among the AOIs were observed. CONCLUSION. The monolithic process yielded better results, in terms of accuracy (trueness and precision), than the other groups, although all three processes led to dentures with Δ-error values well within the clinical tolerance limit.