• 제목/요약/키워드: Denture, partial, fixed, resin-bonded

검색결과 14건 처리시간 0.017초

Dislodgement resistance of modified resin-bonded fixed partial dentures utilizing tooth undercuts: an in vitro study

  • Doh, Re-Mee;Lee, Keun-Woo
    • The Journal of Advanced Prosthodontics
    • /
    • 제1권2호
    • /
    • pp.85-90
    • /
    • 2009
  • STATEMENT OF PROBLEM. Over the years, resin-bonded fixed partial dentures (RBFPDs) have gone through substantial development and refinement. Several studies examined the biomechanics of tooth preparation and framework design in relation to the success rate of RBFPDs and considered retention and resistance form essential for increase of clinical retention. However, these criteria required preparations to be more invasive, which violates not only the original intentions of the RBFPD, but may also have an adverse effect on retention due to loss of enamel, an important factor in bonding. PURPOSE. The object of this in vitro study was to compare the dislodgement resistance of the new types of RBFPDs, the conventional three-unit fixed partial denture, and conventional design of RBFPD (Maryland bridge). MATERIAL AND METHODS. Fifty resin mandibular left second premolars and second molars were prepared on dentiforms, according to the RBFPD design. After model fabrication (five group, n = 10), prostheses were fabricated and cemented with zinc phosphate cement. After cementation, the specimens were subjected to tensile loading at a cross head speed of 4 mm/min in a universal testing machine. The separation load was recorded and analyzed statistically using one-way analysis of variance followed by Duncan's multiple range test. RESULTS. Group V, the pin-retained RBFPDs, had the highest mean dislodgement resistance, whereas specimens of group II, the conventional RBFPDs, exhibited a significantly lower mean dislodgement resistance compared to the other 4 groups (P <.05). There were no significant differences between group I, III, and IV in terms of dislodgement resistance (P>.05). Group V had the highest mean MPa (N/$mm^2$) (P <.05). There was no significant difference between groups I, II, III and IV (P > .05). CONCLUSION. Within the limits of the design of this in vitro study, it was concluded that: 1. The modified RBFPDs which utilizes the original tooth undercuts and requires no tooth preparation, compared with the conventional design of RBFPDs, has significantly high dislodgement resistance (P < .05). 2. The modified RBFPDs which utilizes the original tooth undercuts and requires minimal tooth preparation, compared with the conventional FPDs, has significantly no difference in retention and dislodgement resistance)(P>.05). 3. The pin-retained FPDs showed a high dislodgement resistance compared to the conventional three-unit FPDs (P<.05).

수종 저 침습 고정성 국소의치의 수직하중에 대한 저항 (Fracture Resistance of Low Invasive Fixed Partial Dentures)

  • 최종인;김유리;신창용;동진근
    • 구강회복응용과학지
    • /
    • 제26권3호
    • /
    • pp.241-251
    • /
    • 2010
  • 본 연구의 목적은 4 종류의 저 침습 고정성 국소의치의 수직하중에 대한 저항을 연구하여 임상 활용에 도움을 주기 위함이다. 상악 우측 제 1 대구치 결손을 가정하여 상악 제 2 대구치와 제 2 소구치를 지대치로 하는 고정성 국소의치 금속 다이를 제작하고 4 종류의 저 침습 고정성 국소의치 (Resin bonded FPD, Two Key Bridge, Human Bridge without occlusal rest, Human Bridge with occlusal rest)를 제작하였다. 만능 시험기를 이용하여 수직하중을 가하여 실패 시의 최대 하중을 기록하고 실패 유형을 기록하였다. 평균 최대 하중은 Resin bonded FPD 군이 7,295 N, Two Key Bridge 군이 4,729 N, Human Bridge without occlusal rest 군이 2,190 N, Human Bridge with occlusal rest 군이 3,073 N 이었다. Resin bonded FPD, Two Key Bridge, Human Bridge 군 사이에는 통계학적 유의차가 있었으나 occlusal rest 의 유무에 따른 Human bridge 군 사이에서는 통계학적 유의차가 없었다. 보철물 실패양상은 Resin bonded FPD와 Two Key Bridge는 양측 지대치의 유지부 한쪽이 탈락되는 경우가 양측 모두 탈락되는 경우보다 많았으며 Human Bridge 군은 모두 지대치 양측의 유지부가 함께 탈락되는 경우가 한쪽이 탈락된 경우보다 더 많았다. 본 연구에서 저 침습 고정성 국소의치의 수직 하중에 대한 저항은 Human Bridge 군이 resin bonded FPD 군이나 Two key Bridge 군에 비하여 낮은 것으로 나타났다. 따라서 임상에 적용할 때에는 이와 같은 파절 저항을 고려하여 수복 위치의 최대 교합을 참고하는 것은 물론이고 각종 수복물의 탈락에 대한 저항, 그리고 치질의 삭제량, 환자의 협조도 등을 고려하여 각각의 환자에 적합한 수복물을 선택해야 할 것이다.

Evaluation of Marginal and Internal Integrity of Modified Resin-Bonded Fixed Partial Dentures: An In Vitro Study

  • Ahn, Sung-Hyeon;Choi, Jae-Won;Jeon, Yong-Chan;Jeong, Chang-Mo;Yoon, Mi-Jung;Lee, So-Hyoun;Huh, Jung-Bo
    • Journal of Korean Dental Science
    • /
    • 제10권1호
    • /
    • pp.29-34
    • /
    • 2017
  • Purpose: The purpose of this study was to evaluate the microleakage of various types of resin-bonded fixed partial dentures (RBFPDs) after artificial aging. Materials and Methods: Forty models with missing first molar were fabricated using artificial resin teeth and were divided into four groups: Group A, conventional RBFPDs design; Group B, modified RBFPDs design; Group C, assembled 3-piece RBFPDs design; and Group D, assembled 3-piece RBFPDs with different occlusal rest positions. Half of the specimens underwent chewing simulation process (240,000 cycles, 50 N load, 1.7 Hz) and thermocycling (temperatures $5^{\circ}C{\sim}55^{\circ}C$, dwelling time 30 seconds) and the remaining 20 specimens didn't receive any treatment. All the specimens were immersed in 2% methylene blue solution for 24 hours to evaluate microleakage, and were sectioned at the middle part of abutment teeth. To evaluate the microleaskage, a dye penetration was calculated. Result: With artificial aging, cyclic loading and thermocycling, a 3-piece RBPFD and a 2-piece RBPFD using original tooth undercuts have significantly lower microleakge (P<0.05) compared to the conventional design of RBPFD and modified RBPFD. Conclusion: Within the limit of this experiment, the assembled RBFPDs exhibited a smaller microleakage than the conventional RBFPDs, implying that the assembled RBFPDs can be more effective for reducing the dislodgement of the RBFPDs.

IN VITRO EVALUATION OF FRACTURE RESISTANCE OF VARIOUS THICKNESS FIBER- REINFORCED COMPOSITE INLAY FPD

  • Yi Yang-Jin;Yoon Dong-Jin;Park Chan-Jin;Cho Lee-Ra
    • 대한치과보철학회지
    • /
    • 제41권6호
    • /
    • pp.762-771
    • /
    • 2003
  • Statement of problem. In dentistry, the minimally prepared inlay resin-bonded fixed partial denture (FPD) made of new ceromer / fiber-reinforced composite (FRC) was recently introduced. However, the appropriate dimensions for the long-term success and subsequent failure strength are still unknown. Purpose. The aim of this study was to investigate the most fracture-resistible thickness combination of the ceromer / FRC using a universal testing machine and an AE analyzer. Material and Methods. A metal jig considering the dimensions of premolars and molars was milled and 56-epoxy resin dies, which had a similar elastic modulus to that of dentin, were duplicated. According to manufacturer's instructions, the FRC beams with various thicknesses (2 to 4 mm) were constructed and veneered with the 1 or 2 mm-thick ceromers. The fabricated FPDs were luted with resin cement on the resin dies and stored at room temperature for 72 hours. AE (acoustic emission) sensors were attached to both ends, the specimens were subjected to a compressive load until fracture at a crosshead speed of 0.5 mm/min. The AE and failure loads were recorded and analyzed statistically. Results. The results showed that the failure strength of the ceromer/FRC inlay FPDs was affected by the total thickness of the connectors rather than the ceromer to FRC ratio or the depth of the pulpal wall. Fracture was initiated from the interface and propagated into the ceromer layer regardless of the change in the ceromer / FRC ratio. Conclusion. Within the limitations of this study, the failure loads showed significant differences only in the case of different connector thicknesses, and no significant differences were found between the same connector thickness groups. The application of AE analysis method in a fiber-reinforced inlay FPD can be used to evaluate the fracture behavior and to analyze the precise fracture point.