• 제목/요약/키워드: Dental Scanner

Search Result 267, Processing Time 0.02 seconds

A study on the perception of dental hygienists according to the clinical application experience of digital intraoral scanners: focusing on the comparison with conventional impression (구강 스캐너 임상적용 경험에 따른 치과위생사의 인식 연구: 전통적 인상채득과의 비교를 중심으로)

  • Myoung-Hee, Kim;Young Sun, Hwang;Hang-Sik, Park
    • Journal of Korean Academy of Dental Administration
    • /
    • v.10 no.1
    • /
    • pp.84-92
    • /
    • 2022
  • Impression taking is one of the most frequently performed tasks within the legal scope of dental hygienists. This study aims to compare traditional impression and digital impression taking in various aspects with dental hygienists who have experience using digital intraoral scanners. A total of 61 subjects were included in this analysis. Traditional and digital impression taking were compared, and the perception of intraoral scanners was classified into four factors through exploratory factor analysis. After a normality test of the main variables was performed, a non-parametric test was performed. In terms of the adequacy of the size of the tool inserted into the oral cavity, traditional impression taking was more positive, and there was no significant difference in the precision of impression taking, fit of the prosthesis, and time efficiency. In contrast, the digital intraoral scanner was positive in terms of reducing nausea. In the comparison between the items of the digital intraoral scanner, relatively low satisfaction was shown in terms of convenience of use. This study compared traditional impression taking based on the experience of dental hygienists using oral scanners. It is hoped that this will be one step closer to universalization. In addition, appropriate training on how to use them should be provided.

Real-time Tooth Region Detection in Intraoral Scanner Images with Deep Learning (딥러닝을 이용한 구강 스캐너 이미지 내 치아 영역 실시간 검출)

  • Na-Yun, Park;Ji-Hoon Kim;Tae-Min Kim;Kyeong-Jin Song;Yu-Jin Byun;Min-Ju Kang․;Kyungkoo Jun;Jae-Gon Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.1-6
    • /
    • 2023
  • In the realm of dental prosthesis fabrication, obtaining accurate impressions has historically been a challenging and inefficient process, often hindered by hygiene concerns and patient discomfort. Addressing these limitations, Company D recently introduced a cutting-edge solution by harnessing the potential of intraoral scan images to create 3D dental models. However, the complexity of these scan images, encompassing not only teeth and gums but also the palate, tongue, and other structures, posed a new set of challenges. In response, we propose a sophisticated real-time image segmentation algorithm that selectively extracts pertinent data, specifically focusing on teeth and gums, from oral scan images obtained through Company D's oral scanner for 3D model generation. A key challenge we tackled was the detection of the intricate molar regions, common in dental imaging, which we effectively addressed through intelligent data augmentation for enhanced training. By placing significant emphasis on both accuracy and speed, critical factors for real-time intraoral scanning, our proposed algorithm demonstrated exceptional performance, boasting an impressive accuracy rate of 0.91 and an unrivaled FPS of 92.4. Compared to existing algorithms, our solution exhibited superior outcomes when integrated into Company D's oral scanner. This algorithm is scheduled for deployment and commercialization within Company D's intraoral scanner.

Evaluations of the Accuracy and Reliability of Measurements Made on White Light Scanner-based Dental Digital Models (백색광 스캐너로 채득된 치과용 디지털모형의 정확도와 신뢰도 평가)

  • Kim, Ki-Baek;Kim, Jae-Hong
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.10
    • /
    • pp.357-364
    • /
    • 2012
  • Dental scanner-based dental digital models have been developed that have the potential to replace conventional stone model. The aim of this study was examine the accuracy and reliability of measurements made on digital models. A master model with the prepared upper full arch tooth was used. Stone model(N=10) were produced from master model, and on the other hands, digital models were made with the white light scanner(Identica, korea). One examiner individually measured 6 parameters on the conventional model and the digital models on two occasions. The student's t-test for paired samples and intra-class correlation coefficient(ICC) were used for statistical analysis. At the intra-examiner reliability of measurement, ICC at the stone and digital models were 0.75 and 0.87. The mean difference between measurements made directly on the stone models and those made on the digital models was 0.11-0.23mm, and was statistically significant(P<0.05). These in vitro studies show that accuracy of the digital model is similar to that of the stone model. These results will have to be confirmed in further clinical studies.

Optical Coherence Tomography Applications for Dental Diagnostic Imaging: Prototype System Performance and Preclinical Trial

  • Eun Seo Choi;Won-Jin Yi;Chang-Seok Kim;Woosub Song;Byeong-il Lee
    • Current Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.283-296
    • /
    • 2023
  • An intraoral spectral domain optical coherence tomography (SD-OCT) system has been developed, using a custom-built hand-held scanner and spectrometer. The hand-held OCT probe, based on a microelectromechanical systems scanner and a self-built miniaturized drive circuit, had a field of view sufficient for dental diagnosis. The spectrometer using a fabricated f-theta lens provided the image depth required for dental diagnosis. The axial and transverse resolutions of the OCT system in air were 7.5 ㎛ and 12 ㎛ respectively. The hand-held probe could scan an area of 10 × 10 mm2, and the spectrometer could image along a depth of 2.5 mm. To verify the utility of the developed OCT system, OCT images of tooth hard and soft tissues were acquired, and a user-interface program for diagnosis was developed. Early caries and microcracks that were difficult to diagnose with existing methods could be found, and the state of restoration could be observed. Measuring the depth of the gingival sulcus, distinguishing subgingival calculus, and detecting an implant under the gingiva suggested the possibility of the SD-OCT system as a diagnostic for dental soft tissues. Through the presented OCT images, the capability of the developed SD-OCT system for dental diagnosis was demonstrated.

Comparative analysis on reproducibility among 5 intraoral scanners: sectional analysis according to restoration type and preparation outline form

  • Park, Ji-Man
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.5
    • /
    • pp.354-362
    • /
    • 2016
  • PURPOSE. The trueness and precision of acquired images of intraoral digital scanners could be influenced by restoration type, preparation outline form, scanning technology and the application of power. The aim of this study is to perform the comparative evaluation of the 3-dimensional reproducibility of intraoral scanners (IOSs). MATERIALS AND METHODS. The phantom containing five prepared teeth was scanned by the reference scanner (Dental Wings) and 5 test IOSs (E4D dentist, Fastscan, iTero, Trios and Zfx Intrascan). The acquired images of the scanner groups were compared with the image from the reference scanner (trueness) and within each scanner groups (precision). Statistical analysis was performed using independent two-samples t-test and analysis of variance (${\alpha}=.05$). RESULTS. The average deviations of trueness and precision of Fastscan, iTero and Trios were significantly lower than the other scanners. According to the restoration type, significantly higher trueness was observed in crown and inlay than in bridge. However, no significant difference was observed among four sites of preparation outline form. If compared by the characteristics of IOS, high trueness was observed in the group adopting the active triangulation and using powder. However, there was no significant difference between the still image acquisition and video acquisition groups. CONCLUSION. Except for two intraoral scanners, Fastscan, iTero and Trios displayed comparable levels of trueness and precision values in tested phantom model. Difference in trueness was observed depending on the restoration type, the preparation outline form and characteristics of IOS, which should be taken into consideration when the intraoral scanning data are utilized.

Creating a digitized database of maxillofacial prostheses (obturators): A pilot study

  • Elbashti, Mahmoud;Hattori, Mariko;Sumita, Yuka;Aswehlee, Amel;Yoshi, Shigen;Taniguchi, Hisashi
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.3
    • /
    • pp.219-223
    • /
    • 2016
  • PURPOSE. This study aimed to create a digitized database of fabricated obturators to be kept for patients' potential emergency needs. MATERIALS AND METHODS. A chairside intraoral scanner was used to scan the surfaces of an acrylic resin obturator. The scanned data was recorded and saved as a single standard tessellation language file using a three-dimensional modeling software. A simulated obturator model was manufactured using fused deposition modeling technique in a three-dimensional printer. RESULTS. The entire obturator was successfully scanned regardless of its structural complexity, modeled as three-dimensional data, and stored in the digital system of our clinic at a relatively small size (19.6 MB). A simulated obturator model was then accurately manufactured from these data. CONCLUSION. This study provides a proof-of-concept for the use of digital technology to create a digitized database of obturators for edentulous maxillectomy patients.

Registration of Dental Range Images from a Intraoral Scanner (Intraoral Scanner로 촬영된 치아 이미지의 정렬)

  • Ko, Min Soo;Park, Sang Chul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.3
    • /
    • pp.296-305
    • /
    • 2016
  • This paper proposes a framework to automatically align Dental range image captured by depth sensors like the Microsoft Kinect. Aligning dental images by intraoral scanning technology is a difficult problem for applications requiring accurate model of dental-scan datasets with efficiency in computation time. The most important thing in dental scanning system is accuracy of the dental prosthesis. Previous approaches in intraoral scanning uses a Z-buffer ICP algorithm for fast registration, but it is relatively not accurate and it may cause cumulative errors. This paper proposes additional Alignment using the rough result comes after intraoral scanning alignment. It requires that Each Depth Image of the total set shares some overlap with at least one other Depth image. This research implements the automatically additional alignment system that aligns all depth images into Completed model by computing a network of pairwise registrations. The order of the each individual transformation is derived from a global network and AABB box overlap detection methods.

Accuracy of 3D white light scanning of abutment teeth impressions: evaluation of trueness and precision

  • Jeon, Jin-Hun;Kim, Hae-Young;Kim, Ji-Hwan;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.468-473
    • /
    • 2014
  • PURPOSE. This study aimed to evaluate the accuracy of digitizing dental impressions of abutment teeth using a white light scanner and to compare the findings among teeth types. MATERIALS AND METHODS. To assess precision, impressions of the canine, premolar, and molar prepared to receive all-ceramic crowns were repeatedly scanned to obtain five sets of 3-D data (STL files). Point clouds were compared and error sizes were measured (n=10 per type). Next, to evaluate trueness, impressions of teeth were rotated by $10^{\circ}-20^{\circ}$ and scanned. The obtained data were compared with the first set of data for precision assessment, and the error sizes were measured (n=5 per type). The Kruskal-Wallis test was performed to evaluate precision and trueness among three teeth types, and post-hoc comparisons were performed using the Mann-Whitney U test with Bonferroni correction (${\alpha}=.05$). RESULTS. Precision discrepancies for the canine, premolar, and molar were $3.7{\mu}m$, $3.2{\mu}m$, and $7.3{\mu}m$, respectively, indicating the poorest precision for the molar (P<.001). Trueness discrepancies for teeth types were $6.2{\mu}m$, $11.2{\mu}m$, and $21.8{\mu}m$, respectively, indicating the poorest trueness for the molar (P=.007). CONCLUSION. In respect to accuracy the molar showed the largest discrepancies compared with the canine and premolar. Digitizing of dental impressions of abutment teeth using a white light scanner was assessed to be a highly accurate method and provided discrepancy values in a clinically acceptable range. Further study is needed to improve digitizing performance of white light scanning in axial wall.