DOI QR코드

DOI QR Code

Optical Coherence Tomography Applications for Dental Diagnostic Imaging: Prototype System Performance and Preclinical Trial

  • Eun Seo Choi (Department of Physics, Chosun University) ;
  • Won-Jin Yi (Dental Research Institute, Seoul National University School of Dentistry) ;
  • Chang-Seok Kim (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Woosub Song (Medical Photonics Research Center, Korea Photonics Technology Institute) ;
  • Byeong-il Lee (Department of Smart Healthcare, Pukyong National University)
  • Received : 2023.04.06
  • Accepted : 2023.05.04
  • Published : 2023.06.25

Abstract

An intraoral spectral domain optical coherence tomography (SD-OCT) system has been developed, using a custom-built hand-held scanner and spectrometer. The hand-held OCT probe, based on a microelectromechanical systems scanner and a self-built miniaturized drive circuit, had a field of view sufficient for dental diagnosis. The spectrometer using a fabricated f-theta lens provided the image depth required for dental diagnosis. The axial and transverse resolutions of the OCT system in air were 7.5 ㎛ and 12 ㎛ respectively. The hand-held probe could scan an area of 10 × 10 mm2, and the spectrometer could image along a depth of 2.5 mm. To verify the utility of the developed OCT system, OCT images of tooth hard and soft tissues were acquired, and a user-interface program for diagnosis was developed. Early caries and microcracks that were difficult to diagnose with existing methods could be found, and the state of restoration could be observed. Measuring the depth of the gingival sulcus, distinguishing subgingival calculus, and detecting an implant under the gingiva suggested the possibility of the SD-OCT system as a diagnostic for dental soft tissues. Through the presented OCT images, the capability of the developed SD-OCT system for dental diagnosis was demonstrated.

Keywords

Acknowledgement

We thank WINUS Technology Co., Ltd. for developing and manufacturing the prototype of the dental OCT system.

References

  1. L. O. L. Bohner, E. Mukai, E. Oderich, A. L. Porporatti, C. Pacheco-Pereira, P. Tortamano, and G. D. L. Canto, "Comparative analysis of imaging techniques for diagnostic accuracy of peri-implant bone defects: A meta-analysis," Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 124, 432-440 (2017).  https://doi.org/10.1016/j.oooo.2017.06.119
  2. S. G. Grossi, R. G. Dunford, A. Ho, G. Koch, E. E. Machtei, and R. J. Genco, "Sources of error for periodontal probing measurements," J. Periodont. Res. 31, 330-336 (1996).  https://doi.org/10.1111/j.1600-0765.1996.tb00500.x
  3. U. van der Velden and J. H. de Vries, "The influence of probing force on the reproducibility of pocket depth measurements," J. Clin. Periodontol. 7, 414-420 (1980).  https://doi.org/10.1111/j.1600-051X.1980.tb02014.x
  4. A. Badersten, R. Nilveaus, and J. Egelberg, "Reproducibility of probing attachment level measurements," J. Clin. Periodontol. 11, 475-485 (1984).  https://doi.org/10.1111/j.1600-051X.1984.tb01347.x
  5. T. L. Watts, "Probing site configuration in patients with untreated periodontitis-A study of horizontal positional error," J. Clin. Periodontol. 16, 529-533 (1989).  https://doi.org/10.1111/j.1600-051X.1989.tb02331.x
  6. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).  https://doi.org/10.1126/science.1957169
  7. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).  https://doi.org/10.1364/OE.11.000889
  8. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).  https://doi.org/10.1364/OE.11.002183
  9. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).  https://doi.org/10.1364/OL.28.002067
  10. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength," Opt. Express 11, 3598-3604 (2003).  https://doi.org/10.1364/OE.11.003598
  11. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004).  https://doi.org/10.1364/OPEX.12.002156
  12. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).  https://doi.org/10.1364/OPEX.12.002404
  13. J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, "Optical coherence tomography of the human skin," J. Am. Acad. Dermatol. 37, 958-963 (1997).  https://doi.org/10.1016/S0190-9622(97)70072-0
  14. M. Mogensen, H. A. Morsy, L. Thrane, and G. B. Jemec, "Morphology and epidermal thickness of normal skin imaged by optical coherence tomography," Dermatology 217, 14-20 (2008).  https://doi.org/10.1159/000118508
  15. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2000).  https://doi.org/10.1364/OL.25.000114
  16. G. Liu, A. J. Lin, B. J. Tromberg, and Z. Chen, "A comparison of Doppler optical coherence tomography methods," Biomed. Opt. Express 3, 2669-2680 (2012).  https://doi.org/10.1364/BOE.3.002669
  17. R. K. Wang, "Optical microangiography: A label-free 3-D imaging technology to visualize and quantify blood circulations within tissue beds in vivo," IEEE J. Sel. Top. Quantum Electron. 16, 545-554 (2009).  https://doi.org/10.1109/JSTQE.2009.2033609
  18. Z. Zhi, W. Cepurna, E. Johnson, T. Shen, J. Morrison, and R. K. Wang, "Volumetric and quantitative imaging of retinal blood flow in rats with optical microangiography," Biomed. Opt. Express 2, 579-591 (2011).  https://doi.org/10.1364/BOE.2.000579
  19. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography of the human retina," Arch. Ophthalmol. 113, 325-332 (1995).  https://doi.org/10.1001/archopht.1995.01100030081025
  20. D. M. Sampson, A. M. Dubis, F. K. Chen, R. J. Zawadzki, and D. D. Sampson, "Towards standardizing retinal optical coherence tomography angiography: A review," Light Sci. Appl. 11, 63 (2022). 
  21. Y. S. Hsieh, Y. C. Ho, S. Y. Lee, C. C. Chuang, J. C. Tsai, K. F. Lin, and C. W. Sun, "Dental optical coherence tomography," Sensors 13, 8928-8949 (2013).  https://doi.org/10.3390/s130708928
  22. A. Bykov, T. Hautala, M. Kinnunen, A. Popov, S. Karhula, S. Saarakkala, M. T. Nieminen, V. Tuchin, and I. Meglinski, "Imaging of subchondral bone by optical coherence tomography upon optical clearing of articular cartilage," J. Biophotonics 9, 270-275 (2016).  https://doi.org/10.1002/jbio.201500130
  23. B. W. Colston, M. J. Everett, L. B. da Silva, L. L. Otis, P. Stroeve, and H. Nathel, "Imaging of hard-and soft-tissue structure in the oral cavity by optical coherence tomography," Appl. Opt. 37, 3582-3585 (1998).  https://doi.org/10.1364/AO.37.003582
  24. L. L. Otis, M. J. Everett, U. S. Sathyam, and B. W. Colston Jr., "Optical coherence tomography: A new imaging: Technology for dentistry," J. Am. Dent. Assoc. 131, 511-514 (2000).  https://doi.org/10.14219/jada.archive.2000.0210
  25. J. S. Holtzman, K. Osann, J. Pharar, K. Lee, Y. C. Ahn, T. Tucker, S. Sabet, Z. Chen, R. Gukasyan, and P. Wilder-Smith, "Ability of optical coherence tomography to detect caries beneath commonly used dental sealants," Lasers Surg. Med. 42, 752-759 (2010).  https://doi.org/10.1002/lsm.20963
  26. B. T. Amaechi, A. Podoleanu, S. M. Higham, and D. A. Jackson, "Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries," J. Biomed. Opt. 8, 642-647 (2003).  https://doi.org/10.1117/1.1606685
  27. B. T. Amaechi, S. M. Higham, A. Podoleanu, J. A. Rogers, and D. A. Jackson, "Use of optical coherence tomography for assessment of dental caries: Quantitative procedure," J. Oral Rehabil. 28, 1092-1093 (2001).  https://doi.org/10.1046/j.1365-2842.2001.00840.x
  28. K. Imai, Y. Shimada, A. Sadr, Y. Sumi, and J. Tagami, "Noninvasive cross-sectional visualization of enamel cracks by optical coherence tomography in vitro," J. Endod. 38, 1269-1274 (2012).  https://doi.org/10.1016/j.joen.2012.05.008
  29. Y. Nakajima, Y. Shimada, M. Miyashin, Y. Takagi, J. Tagami, and Y. Sumi, "Noninvasive cross-sectional imaging of incomplete crown fractures (cracks) using swept-source optical coherence tomography," Int. Endod. J. 45, 933-941 (2012).  https://doi.org/10.1111/j.1365-2591.2012.02052.x
  30. T. A. B. A. Sadr, Y. Shimada, J. Tagami, and Y. Sumi, "Noninvasive quantification of resin-dentin interfacial gaps using optical coherence tomography: Validation against confocal microscopy," Dent. Mater. J. 27, 915-925 (2011).  https://doi.org/10.1016/j.dental.2011.05.003
  31. S.-H. Lee, J.-J. Lee, H.-J. Chung, J.-T. Park, and H.-J. Kim, "Dental optical coherence tomography: New potential diagnostic system for cracked-tooth syndrome," Surg. Radiol. Anat. 38, 49-54 (2016).  https://doi.org/10.1007/s00276-015-1514-8
  32. K. Ishibashi, N. Ozawa, J. Tagami, and Y. Sumi, "Swept-source optical coherence tomography as a new tool to evaluate defects of resin-based composite restorations," J. Dent. 39, 543-548 (2011).  https://doi.org/10.1016/j.jdent.2011.05.005
  33. Y. Shimada, A. Sadr, Y. Sumi, and J. Tagami, "Application of optical coherence tomography (OCT) for diagnosis of caries, cracks, and defects of restorations," Curr. Oral Health Rep. 2, 73-80 (2015).  https://doi.org/10.1007/s40496-015-0045-z
  34. Y.-S. Hsieh, C.-W. Sun, C.-Y. Wang, Y.-C. Ho, S.-Y. Lee, C.-W. Lu, C.-P. Jiang, and C.-C. Chuang, "Subgingival calculus imaging based on swept-source optical coherence tomography," J. Biomed. Opt. 16, 071409 (2011). 
  35. J. H. Baek, J. Na, B. H. Lee, E. Choi, and W. S. Son, "Optical approach to the periodontal ligament under orthodontic tooth movement: A preliminary study with optical coherence tomography," Am. J. Orthod. Dentofacial Orthop. 135, 252-259 (2009).  https://doi.org/10.1016/j.ajodo.2007.10.037
  36. X. Xiang, M. G. Sowa, A. M. Iacopino, R. G. Maev, M. D. Hewko, A. Man, and K. Z. Liu, "An update on novel non-invasive approaches for periodontal diagnosis," J. Periodontol. 81, 186-198 (2010).  https://doi.org/10.1902/jop.2009.090419
  37. C. C. Mota, L. O. Fernandes, R. Cimoes, and A. S. Gomes, "Non-invasive periodontal probing through Fourier-domain optical coherence tomography," J. Periodontol. 86, 1087-1094 (2015).  https://doi.org/10.1902/jop.2015.150047
  38. L. O. Fernandes, C. C. B. O. Mota, L. S. A. de Melo, M. U. S. da C. Soares, D. da S. Feitosa, and A. S. L. Gomes, "In vivo assessment of periodontal structures and measurement of gingival sulcus with optical coherence tomography: A pilot study," J. Biophotonics 10, 862-869 (2017).  https://doi.org/10.1002/jbio.201600082
  39. S. Kim, S.-R. Kang, H.-J. Park, B. Kim, T.-I. Kim, and W.-J. Yi, "Quantitative measurement of peri-implant bone defects using optical coherence tomography," J. Periodontal Implant Sci. 48, 84-91 (2018).  https://doi.org/10.5051/jpis.2018.48.2.84
  40. S.-H. Kim, S.-R. Kang, H.-J. Park, J.-M. Kim, W.-J. Yi, and T.-I. Kim, "Improved accuracy in periodontal pocket depth measurement using optical coherence tomography," J. Periodontal Implant Sci. 47, 13-19 (2017).  https://doi.org/10.5051/jpis.2017.47.1.13
  41. H. Schneider, K.-J. Park, M. Hafer, C. Ruger, G. Schmalz, F. Krause, J. Schmidt, D. Ziebolz, and R. Haak, "Dental applications of optical coherence tomography (OCT) in cariology," Appl. Sci. 7, 472 (2017). 
  42. R. Haak, P. Schmidt, K.-J. Park, M. Hafer, F. Krause, D. Ziebolz, and H. Schneider, "OCT for early quality evaluation of tooth-composite bond in clinical trials," J. Dent. 76, 46-51 (2018).  https://doi.org/10.1016/j.jdent.2018.06.007
  43. J. Won, P.-C. Huang, D. R. Spillman, E. J. Chaney, R. Adam, M. Klukowska, R. Barkalifa, and S. A. Boppart, "Handheld optical coherence tomography for clinical assessment of dental plaque and gingiva," J. Biomed. Opt. 25, 116011 (2020). 
  44. H. Schneider, M. Ahrens, M. Strumpski, C. Ruger, M. Hafer, G. Huttmann, D. Theisen-Kunde, H. Schulz-Hildebrandt, and R. Haak, "An intraoral oct probe to enhanced detection of approximal carious lesions and assessment of restorations," J. Clin. Med. 9, 3257 (2020). 
  45. J. B. Eom, J. S. Ahn, J. Eom, and A. Park, "Wide field of view optical coherence tomography for structural and functional diagnoses in dentistry," J. Biomed. Opt. 23, 076008 (2018). 
  46. S. S. Lee, W. Song, and E. S. Choi, "Spectral domain optical coherence tomography imaging performance improvement based on field curvature aberration-corrected spectrometer," Appl. Sci. 10, 3657 (2020).