Browse > Article
http://dx.doi.org/10.4047/jap.2014.6.6.468

Accuracy of 3D white light scanning of abutment teeth impressions: evaluation of trueness and precision  

Jeon, Jin-Hun (Department of Dental Laboratory Science and Engineering, College of Health Science, Korea University)
Kim, Hae-Young (Department of Public Health Sciences, Graduate School & BK21+ Program in Public Health Sciences, Korea University)
Kim, Ji-Hwan (Department of Dental Laboratory Science and Engineering, College of Health Science, Korea University)
Kim, Woong-Chul (Department of Dental Laboratory Science and Engineering, College of Health Science, Korea University)
Publication Information
The Journal of Advanced Prosthodontics / v.6, no.6, 2014 , pp. 468-473 More about this Journal
Abstract
PURPOSE. This study aimed to evaluate the accuracy of digitizing dental impressions of abutment teeth using a white light scanner and to compare the findings among teeth types. MATERIALS AND METHODS. To assess precision, impressions of the canine, premolar, and molar prepared to receive all-ceramic crowns were repeatedly scanned to obtain five sets of 3-D data (STL files). Point clouds were compared and error sizes were measured (n=10 per type). Next, to evaluate trueness, impressions of teeth were rotated by $10^{\circ}-20^{\circ}$ and scanned. The obtained data were compared with the first set of data for precision assessment, and the error sizes were measured (n=5 per type). The Kruskal-Wallis test was performed to evaluate precision and trueness among three teeth types, and post-hoc comparisons were performed using the Mann-Whitney U test with Bonferroni correction (${\alpha}=.05$). RESULTS. Precision discrepancies for the canine, premolar, and molar were $3.7{\mu}m$, $3.2{\mu}m$, and $7.3{\mu}m$, respectively, indicating the poorest precision for the molar (P<.001). Trueness discrepancies for teeth types were $6.2{\mu}m$, $11.2{\mu}m$, and $21.8{\mu}m$, respectively, indicating the poorest trueness for the molar (P=.007). CONCLUSION. In respect to accuracy the molar showed the largest discrepancies compared with the canine and premolar. Digitizing of dental impressions of abutment teeth using a white light scanner was assessed to be a highly accurate method and provided discrepancy values in a clinically acceptable range. Further study is needed to improve digitizing performance of white light scanning in axial wall.
Keywords
White light scanner; Accuracy; Precision and trueness; Impression scanning; 3D shape data; Point cloud;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Naidu D, Freer TJ. Validity, reliability, and reproducibility of the iOC intraoral scanner: a comparison of tooth widths and Bolton ratios. Am J Orthod Dentofacial Orthop 2013;144:304-10.   DOI
2 Flugge TV, Schlager S, Nelson K, Nahles S, Metzger MC. Precision of intraoral digital dental impressions with iTero and extraoral digitization with the iTero and a model scanner. Am J Orthod Dentofacial Orthop 2013;144:471-8.   DOI
3 Persson AS, Oden A, Andersson M, Sandborgh-Englund G. Digitization of simulated clinical dental impressions: virtual three-dimensional analysis of exactness. Dent Mater 2009;25:929-36.   DOI   ScienceOn
4 Quaas S, Rudolph H, Luthardt RG. Direct mechanical data acquisition of dental impressions for the manufacturing of CAD/CAM restorations. J Dent 2007;35:903-8.   DOI   ScienceOn
5 Persson AS, Oden A, Andersson M, Sandborgh-Englund G. Digitization of simulated clinical dental impressions: virtual three-dimensional analysis of exactness. Dent Mater 2009;25:929-36.   DOI   ScienceOn
6 Schaefer O, Watts DC, Sigusch BW, Kuepper H, Guentsch A. Marginal and internal fit of pressed lithium disilicate partial crowns in vitro: a three-dimensional analysis of accuracy and reproducibility. Dent Mater 2012;28:320-6.   DOI   ScienceOn
7 Chang M, Park SC. Automated scanning of dental impressions. Comput-aided des 2009;41:404-11.   DOI
8 Brosky ME, Pesun IJ, Lowder PD, Delong R, Hodges JS. Laser digitization of casts to determine the effect of tray selection and cast formation technique on accuracy. J Prosthet Dent 2002;87:204-9.   DOI   ScienceOn
9 Khardekar R, Burton G, McMains S. Finding feasible mold parting directions using graphics hardware. Comput-aided des 2006;38:327-41.   DOI
10 Priyadarshi AK, Gupta SK. Geometric algorithms for automated design of multi-piece permanent molds. Comput-aided des 2004;36:241-60.   DOI
11 ISO 5725-1:2003. Accuracy (trueness and precision) of measurement methods and results? Part 1: General principles and definitions. ISO, Geneva; Swizterland, 2003.
12 Hoyos A, Soderholm KJ. Influence of tray rigidity and impression technique on accuracy of polyvinyl siloxane impressions. Int J Prosthodont 2011;24:49-54.
13 Chandran DT, Jagger DC, Jagger RG, Barbour ME. Two- and three-dimensional accuracy of dental impression materials: effects of storage time and moisture contamination. Biomed Mater Eng 2010;20:243-9.
14 Wostmann B, Rehmann P, Balkenhol M. Accuracy of impressions obtained with dual-arch trays. Int J Prosthodont 2009;22:158-60.
15 Luthardt RG, Loos R, Quaas S. Accuracy of intraoral data acquisition in comparison to the conventional impression. Int J Comput Dent 2005;8:283-94.
16 Alikhasi M, Monzavi A, Bassir SH, Naini RB, Khosronedjad N, Keshavarz S. A comparison of precision of fit, rotational freedom, and torque loss with copy-milled zirconia and prefabricated titanium abutments. Int J Oral Maxillofac Implants 2013;28:996-1002.   DOI
17 Webber B, McDonald A, Knowles J. An in vitro study of the compressive load at fracture of Procera AllCeram crowns with varying thickness of veneer porcelain. J Prosthet Dent 2003;89:154-60.   DOI   ScienceOn
18 Quaas S, Rudolph H, Luthardt RG. Direct mechanical data acquisition of dental impressions for the manufacturing of CAD/CAM restorations. J Dent 2007;35:903-8.   DOI   ScienceOn
19 Kenyon BJ, Hagge MS, Leknius C, Daniels WC, Weed ST. Dimensional accuracy of 7 die materials. J Prosthodont 2005;14:25-31.   DOI
20 DeLong R, Heinzen M, Hodges JS, Ko CC, Douglas WH. Accuracy of a system for creating 3D computer models of dental arches. J Dent Res 2003;82:438-42.   DOI   ScienceOn
21 Rudolph H, Luthardt RG, Walter MH. Computer-aided analysis of the influence of digitizing and surfacing on the accuracy in dental CAD/CAM technology. Comput Biol Med 2007;37:579-87.   DOI   ScienceOn
22 Persson M, Andersson M, Bergman B. The accuracy of a high-precision digitizer for CAD/CAM of crowns. J Prosthet Dent 1995;74:223-9.   DOI   ScienceOn
23 Moldovan O, Luthardt RG, Corcodel N, Rudolph H. Three-dimensional fit of CAD/CAM-made zirconia copings. Dent Mater 2011;27:1273-8.   DOI   ScienceOn
24 Jeon JH, Lee KT, Kim HY, Kim JH, Kim WC. White light scanner-based repeatability of 3-dimensional digitizing of silicon rubber abutment teeth impressions. J Adv Prosthodont 2013;5:452-6.   DOI
25 Persson AS, Andersson M, Oden A, Sandborgh-Englund G. Computer aided analysis of digitized dental stone replicas by dental CAD/CAM technology. Dent Mater 2008;24:1123-30.   DOI
26 Persson A, Andersson M, Oden A, Sandborgh-Englund G. A three-dimensional evaluation of a laser scanner and a touch-probe scanner. J Prosthet Dent 2006;95:194-200.   DOI   ScienceOn
27 Ziegler M. Digital impression taking with reproducibly high precision. Int J Comput Dent 2009;12:159-63.