• 제목/요약/키워드: Dental Implant Abutment

검색결과 349건 처리시간 0.021초

보철용 지르코니아 어버트먼트의 표면적합도와 전기화학적 거동 (Surface Compatibility and Electrochemical Behaviors of Zirconia Abutment for Prosthodontics)

  • 박근형;정용훈;김원기;최한철;김명수
    • 한국표면공학회지
    • /
    • 제42권1호
    • /
    • pp.41-46
    • /
    • 2009
  • The fit between dental implant fixture and zirconia abutment is affected by many variables during the fabrication process by CAD/CAM program and milling working. The purpose of this study was to evaluate the surface compatibility and electrochemical behaviors of zirconia abutment for prosthodontics. Zirconia abutments were prepared and fabricated using zirconia block and milling machine. For stabilization of zirconia abutments, sintering was carried out at $1500^{\circ}F$ for 7 hrs. The specimens were cut and polished for gap observation. The gap between dental implant fixture and zirconia abutment was observed using field-emission scanning electron microscopy (FE-SEM). The hardness and corrosion resistance of zirconia abutments were observed with vickers hardness tester and potentiostat. The gap between dental implant fixture and zirconia abutment was $5{\sim}12{\mu}m$ for small gap, and $40{\sim}60{\mu}m$ for large gap. The hardness of zirconia surface was 1275.5 Hv and showed micro-machined scratch on the surface. The corrosion potentials of zirconia abutment/fixture was .290 mV and metal abutment/fixture was .280 mV, whereas $|E_{pit}-E_{corr}|$ of zirconia abutment/fixture (172 mV) was higher than that of metal abutment/fixture (150 mV). The corrosion morphology of metal abutment/fixture showed the many pit on the surface in compared with zirconia abutment/fixture.

치과용 임플란트 지대주 나사 구조에 관한 연구 (Characteristics of Abutment Screw Structure for Dental Implant)

  • 송종법;최일경;정효경;권순홍;권순구;박종민;김종순;정성원;최원식
    • 한국산업융합학회 논문집
    • /
    • 제20권2호
    • /
    • pp.169-176
    • /
    • 2017
  • Dental implants are required to have biomechanical functions and biostability in order to perform authoring, pronunciation, and aesthetic functions in the oral cavity. In terms of biostability, pure titanium for medical have good biostability and no rejection in the alveolar bone. with appropriate strength in terms of strength as well as biocompatibility. In recent years, various surgical methods and devices have been developed to improve the convenience and safety of the procedure. However, as the number of procedures increases, the screw loosening of the abutment screw connecting the artificial root and the abutment There are many reports of artificial root and abutment fracture. Fig. 1 is an example of a case where the upper part of the abutment screw is arbitrarily modified to remove the abutment by the abutment fracture due to the loosening of the abutment screw. The fundamental cause of abduction of the abutment screw is caused by the slight movement due to the lowering of the retention force of the abutment screw. It is necessary to minimize loosening of the abutment screw to avoid problems such as fracture during the period of using the implant. The purpose of this study is to investigate the structure of the abutment screw to prevent the loosening of the abutment screw by forming 0.5mm slot.

Comparison of fit accuracy and torque maintenance of zirconia and titanium abutments for internal tri-channel and external-hex implant connections

  • Siadat, Hakimeh;Beyabanaki, Elaheh;Mousavi, Niloufar;Alikhasi, Marzieh
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권4호
    • /
    • pp.271-277
    • /
    • 2017
  • PURPOSE. This in vitro study aimed to evaluate the effect of implant connection design (external vs. internal) on the fit discrepancy and torque loss of zirconia and titanium abutments. MATERIALS AND METHODS. Two regular platform dental implants, one with external connection ($Br{\aa}nemark$, Nobel Biocare AB) and the other with internal connection (Noble Replace, Nobel Biocare AB), were selected. Seven titanium and seven customized zirconia abutments were used for each connection design. Measurements of geometry, marginal discrepancy, and rotational freedom were done using video measuring machine. To measure the torque loss, each abutment was torqued to 35 Ncm and then opened by means of a digital torque wrench. Data were analyzed with two-way ANOVA and t-test at ${\alpha}=0.05$ of significance. RESULTS. There were significant differences in the geometrical measurements and rotational freedom between abutments of two connection groups (P<.001). Also, the results showed significant differences between titanium abutments of internal and external connection implants in terms of rotational freedom (P<.001). Not only customized internal abutments but also customized external abutments did not have the exact geometry of prefabricated abutments (P<.001). However, neither connection type (P=.15) nor abutment material (P=.38) affected torque loss. CONCLUSION. Abutments with internal connection showed less rotational freedom. However, better marginal fit was observed in externally connected abutments. Also, customized abutments with either connection could not duplicate the exact geometry of their corresponding prefabricated abutment. However, neither abutment connection nor material affected torque loss values.

Correlation between microleakage and screw loosening at implant-abutment connection

  • Sahin, Cem;Ayyildiz, Simel
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권1호
    • /
    • pp.35-38
    • /
    • 2014
  • PURPOSE. This study aimed to evaluate the correlation between microleakage and screw loosening at different types of implant-abutment connections and/or geometries measuring the torque values before and after the leakage tests. MATERIALS AND METHODS. Three different abutment types (Intenal hex titanium, internal hex zirconium, morse tapered titanium) with different geometries were connected to its own implant fixture. All the abutments were tightened with a standard torque value then the composition was connected to the modified fluid filtration system. After the measurements of leakage removal torque values were re-measured. Kruskal-wallis test was performed for non-parametric and one-way ANOVA was performed for parametric data. The correlation was evaluated using Spearman Correlation Test (${\alpha}=0.05$). RESULTS. Significantly higher microleakage was found at the connection of implant-internal hex zirconium abutment. Observed mean torque value loss was also significantly higher than other connection geometries. Spearman tests revealed a significant correlation between microleakage and screw loosening. CONCLUSION. Microleakage may provoke screw loosening. Removing torque values rationally decrease with the increase of microleakage.

임플란트의 위치와 방향이 좋지 않은 증례의 보철 치료 (Prosthodontic treatment for cases with poor implant position and orientation)

  • 노관태
    • 대한치과의사협회지
    • /
    • 제58권9호
    • /
    • pp.583-589
    • /
    • 2020
  • If the implant is planted in the wrong position or direction, it is disadvantageous for stress distribution, and it is easy to cause complications such as screw loosening, abutment fracture, and implant fracture. If the position or orientation of the implant is not good, efforts should be made to minimize the problem through proper implant prosthetic treatment. In this article, the prosthetic method for facilitating future maintenance in cases with poor implant placement or orientation will be presented.

  • PDF

지르코니아 및 티타늄 고정체 소재가 지대주 나사의 응력 분포에 미치는 영향: 3차원 유한 요소 분석 (Influence of zirconia and titanium fixture materials on stress distribution in abutment screws: a three-dimensional finite element analysis)

  • 김은영;홍민호
    • 대한치과기공학회지
    • /
    • 제43권2호
    • /
    • pp.42-47
    • /
    • 2021
  • Purpose: The purpose of this study was to evaluate the stability of abutment screws used with the zirconia fixture-based implant system and compare them with those used with the existing titanium fixture system via the finite element method. Methods: A single implant-supported restoration was designed for the finite element analysis. A universal analysis program was used to set 8 occlusal points along the direction to the long axis of the implant, and an occlusal load of 700 N was applied. Results: In all models (Zir and Ti-fixture model), the screw threads presented with the highest von Mises stress (VMS) values, whereas the head and end presented with the lowest VMS values. The VMS of the screw used in the zirconia-fixture model was 5.97% lower than that used in the titanium-fixture model (261.258 vs. 276.911 MPa, respectively) despite statistical significance. Furthermore, the zirconia fixture (352.912 MPa) had a higher stress value (8.42%) than the titanium fixture (332.331 MPa). In a completely tightened titanium fixture implant system, the stress was concentrated in the implant-abutment connection interface, the zirconia fixture presented with a stable stress distribution. Conclusion: Although the zirconia fixture demonstrated a high VMS value, owing to the stiffness and elasticity coefficients of the material, the stress generated in the abutment screws was similar in all models. In conclusion, the zirconia fixture-based implant system presented with a more stable stress distribution in the abutment screws than the titanium fixture-based implant system.

Clinical study on screw loosening in dental implant prostheses: a 6-year retrospective study

  • Lee, Ki-Young;Shin, Kyung Su;Jung, Ji-Hye;Cho, Hye-Won;Kwon, Kyung-Hwan;Kim, Yu-Lee
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제46권2호
    • /
    • pp.133-142
    • /
    • 2020
  • Objectives: In this study, we determined the incidence and pattern of screw loosening in patients who received dental implants. Materials and Methods: Patients who received implants between January 2008 and October 2013 and completed their prosthetic rehabilitation were evaluated for the incidence, frequency, and onset of screw loosening using dental charts and radiographs. The association between each factor and screw loosening was analyzed using the chi-square test and a multivariate analysis with binary logistic regression models (P<0.05). Results: Total 1,928 implants were placed in 837 patients (448 males, 389 females), whose follow-up period after loading varied from 0.25 to 70 months (mean period, 31.5 months). Screw loosening occurred in 7.2% of implants. Most cases occurred less than six months after loading. Among those, 22.3% experienced recurrent screw loosening. Screw loosening was most common in the molar region (8.5%) and frequently associated with an implant diameter of ≥5 mm (14.2%). External implant-abutment connections (8.9%) and screw-retained implant prostheses (10.1%) showed higher incidence of problems than internal implant-abutment connections and cement-retained implants, respectively. Screw loosening was most common in implant prostheses with single crowns (14.0%). Conclusion: Within the limits of the current study, we conclude that the incidence of screw loosening differs significantly according to the position of implant placement, the type of implant and manufacturer, implant diameter, the type of implant-abutment connection, the type of retention in the implant prosthesis, and the type of implant prosthesis.

인공치아의 즉시부하를 위해 새로이 개발된 인공치아 지대주(Satellite Abutment)의 광탄성 응력 분석 (PHOTOELASTIC STRESS ANALYSIS OF LOAD TRANSFER TO SATELLITE ABUTMENT AS AN IMMEDIATE ABUTMENT)

  • 박상규;이백수;;김부동
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제28권6호
    • /
    • pp.472-479
    • /
    • 2002
  • Since $Br^{\circ}anemark$ introduced the osseointegrated implants, they have been granted for useful methods for the restoration of oral function. The original $Br^{\circ}anemark$ protocol recommended long stress-free healing periods to achieve the osseointegration of dental implants. However, many clinical and experimental studies have shown that the osseointegration is no wonder in almost cases and that early and immediate loading may lead to predictable osseointegration. So we are willing to introduce the Satellite Abutment newly invented for immediate loading. We think that it will make the occlusal forces dispersed to surrounding bone and that we can restore the oral function immediately after implant installation not disturbing osseointegration. In case of using Satellite abutment, stress concentrated to bone contact area of implant was distributed not only fixation plate and screws but also superior, middle portion of implant and cortical layer of jaw bone. It was clearly decreased on the bone contact surfaces around dental implants. 1. Stress was decreased more than 76.5% when satellite straight abutment was used. 2. Stress was decreased more than 50% when satellite angled abutment was used. 3. The stress around dental implant was well distributed along the cortical bone surface and the fixation plate and screw. This study concludes that satellite abutment can be used as all immediate loading implant prothesis because it was possible to distribute periimplant occlusal stress through implant contact bone surface and cortical layer of jaw bone.

Effect of cement washout on loosening of abutment screws and vice versa in screw- and cement- retained implant-supported dental prosthesis

  • Kim, Seok-Gyu;Chung, Chae-Heon;Son, Mee-Kyoung
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권3호
    • /
    • pp.207-213
    • /
    • 2015
  • PURPOSE. The purpose of this study was to examine the abutment screw stability of screw- and cement-retained implant-supported dental prosthesis (SCP) after simulated cement washout as well as the stability of SCP cements after complete loosening of abutment screws. MATERIALS AND METHODS. Thirty-six titanium CAD/CAM-made implant prostheses were fabricated on two implants placed in the resin models. Each prosthesis is a two-unit SCP: one screw-retained and the other cemented. After evaluating the passive fit of each prosthesis, all implant prostheses were randomly divided into 3 groups: screwed and cemented SCP (Control), screwed and non-cemented SCP (Group 1), unscrewed and cemented SCP (Group 2). Each prosthesis in Control and Group 1 was screwed and/or cemented, and the preloading reverse torque value (RTV) was evaluated. SCP in Group 2 was screwed and cemented, and then unscrewed (RTV=0) after the cement was set. After cyclic loading was applied, the postloading RTV was measured. RTV loss and decementation ratios were calculated for statistical analysis. RESULTS. There was no significant difference in RTV loss ratio between Control and Group 1 (P=.16). No decemented prosthesis was found among Control and Group 2. CONCLUSION. Within the limits of this in vitro study, the stabilities of SCP abutment screws and cement were not significantly changed after simulated cement washout or screw loosening.

시멘트 유지형 임플란트 지대주의 높이와 축면경사도가 보철물의 유지력에 미치는 영향 (Effect of different abutment height and convergence taper on the retention of crowns cemented onto implant-supported prostheses)

  • 변태희;김부섭;정인성
    • 대한치과기공학회지
    • /
    • 제30권1호
    • /
    • pp.57-63
    • /
    • 2008
  • The purpose of this study was to ascertain the effect of different abutment height and different taper of abutment on retention force of cemented implant-supported prostheses. Test specimens consisted of different abutment height group(3mm, 4mm, 5mm, 6mm, 7mm) and different taper(degrees) abutment group($4^{\circ},\;5^{\circ},\;6^{\circ},\;7^{\circ},\;8^{\circ}$). The surfaces of abutments and crowns were manufactured and finished by automatic lathe(CNC). Luting cement(Tokuso Ionomer) was prepared according to the manufacturer's instruction. And the cylinders were sealed onto the abutments and loaded in compression at 5kg for 10minutes. Excess cement was removed from the abutment-cylinder junction and the specimens were stored at room temparature for 24 hours. Specimens were tested in tension using a universal testing machine. Within the limits of this study, the following conclusions were drawn: 1. The increase in abutment height result in improvement in retention strength(P<0.05). 2. The increase in taper of abutment result in decrease in retention strength(P<0.05). 3. The decrease in abutment height result in decrease in retention strength, besides has a significantly lower retention strength at 3mm abutment height. 4. The increase in taper of abutment result in decrease in retention strength, besides has a significantly lower retention strength at $7^{\circ}$ abutment.

  • PDF