• Title/Summary/Keyword: Density functional method (DFT)

검색결과 81건 처리시간 0.028초

Corrosion Inhibition Screening of 2-((6-aminopyridin-2-yl)imino)indolin-3-one: Weight Loss, Morphology, and DFT Investigations

  • Nadia Betti;Ahmed A. Al-Amiery
    • Corrosion Science and Technology
    • /
    • 제22권1호
    • /
    • pp.10-20
    • /
    • 2023
  • Because of its inexpensive cost, mild steel is frequently employed as a construction material in different industries. Unfortunately, because of its limited resistance to corrosion, a protective layer must be applied to keep it from decaying in acidic or basic environments. The presence of heteroatoms, such as nitrogen, oxygen, and pi-electrons in the Schiff base could cause effective adsorption on the mild steel surface, preventing corrosion. The weight loss method and scanning electron microscopy (SEM) were used to investigate the inhibitory effects of APIDO on mild steel in a 1 M hydrochloric acid environment. The efficiency of inhibition increased as the inhibitor concentration increased and decreased as the temperature increased. The SEM analysis confirmed that the corrosion inhibition of APIDO proceeded by the formation of an organic protective layer over the mild steel surface by the adsorption process. Simulations based on the density functional theory are used to associate inhibitory efficacy with basic molecular characteristics. The findings acquired were compatible with the experimental information provided in the research.

Comparative Studies on Two Fluoro-Substituted 2-Pyrazoline Derivatives with Experimental and Theoretical Methods

  • Guo, Huan-Mei;Wang, Xian;Jian, Fang Fang;Xiao, Hai Lian;Zhao, Pu Su
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권5호
    • /
    • pp.1061-1066
    • /
    • 2009
  • Two fluoro-substituted 2-pyrazoline derivatives, 1-phenyl-3-(4-methoxyphenyl)-5-(4-fluorophenyl)-2-pyrazoline (1) and 1-phenyl-3-(4-methoxyphenyl)-5-(2-fluoro-phenyl)-2-pyrazoline (2) have been synthesized and characterized by elemental analysis, IR, UV-Vis and fluorescence spectra. The crystal structure of 1 has been determined by X-ray single crystal diffraction. For the two compounds, density functional theory (DFT) calculations of the structures and natural population atomic charge analysis (NPA) have been performed at B3LYP/6-311G** level of theory. By using TD-DFT method, electron spectra of 1 and 2 have been predicted, which are very approximate with the experimental ones. Comparative studies on 1 and 2 indicate that the location change of fluorine atom in 5-position phenyl ring of 2-pyrazoline does not make significant change of geometries and electronic transition bands, but it leads to evident change of atomic charge distributions and peak intensities of UV and fluorescence spectra.

Study on the Electron Injection of Newly Synthesized Organic Sensitizer in Dye-Sensitized Solar Cell

  • 강태연;이도권;고민재;김경곤
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.310-310
    • /
    • 2010
  • Electronic and photovoltaic characteristics of two sensitizers (TA-BTD-CA and TA-BTD-St-CA), composed of a different $\pi$-conjugation in the linker group, have been investigated by theoretical and experimental methods. The electronic structure, transition dipole moment and oscillator strengths of two sensitizers have been scrutinized by using density functional theory (DFT) and time-dependent DFT (TD-DFT) method. The LUMO level and the oscillator strength of TA-BTD-St-CA was higher than that of TA-BTD-CA, which may facilitate the electron injection process as well as increase the absorption coefficient. The relative efficiencies of the electron injection from the excited sensitizer to nanocrystalline TiO2 and SnO2 films have also been investigated by nanosecond transient absorption spectroscopy. The relative electron injection efficiency of TA-BTD-St-CA exhibited similar injection efficiency for two different semiconductors. However, in the case of TA-BTD-CA sensitizer, electron injection into SnO2 was approximately three times larger than that into TiO2. This enhancement of electron injection of TA-BTD-CA for the SnO2 is due to the increment of the driving force caused by positive shift of conduction band of semiconductor, which was also confirmed from the investigation for the photovoltaic characteristics according to the electrolyte additive, such as LiI additive.

  • PDF

트리나이트로이미다졸 치환체들의 화약성능 및 감도 예측 분석 (Predictive Analysis on Explosive Performance and Sensitivity of 1-Substituted Trinitroimidazoles)

  • 전영진;김현수;김진석;조수경
    • 한국군사과학기술학회지
    • /
    • 제20권4호
    • /
    • pp.543-550
    • /
    • 2017
  • Various chemical properties including density and heat of formation of 1-substitued trinitroimidazoles (TNIs) were estimated by using density functional theory (DFT). Using chemical properties estimated by DFT, explosive performance and sensitivity of 1-substitued TNIs were analyzed by following the ADD Method-1 procedure. The results were displayed on two-dimensional performance-sensitivity plot, and were compared with those of explosive molecules commonly used in many military systems. Different 1-substituents of TNI made that both explosive performance and impact sensitivity were changed significantly. Methyl substituted TNI became moderately insensitive and slightly less powerful. Amino, fluoro, picryl, and difluoroamino substituted TNIs were highly powerful like RDX and HMX, but greatly sensitive. Nitro substituted TNI was predicted to be extremely sensitive to be handled as a secondary explosive.

전자 여기상태에서 phenol-(H2O)2 크러스터의 수소결합 동력학: DFT/TDDFT 연구 (Hydrogen Bonding Dynamics of Phenol-(H2O)2 Cluster in the Electronic Excited State: a DFT/TDDFT Study)

  • Wang, Se;Hao, Ce;Wang, Dandan;Dong, Hong;Qiu, Jieshan
    • 대한화학회지
    • /
    • 제55권3호
    • /
    • pp.385-391
    • /
    • 2011
  • Phenol-$(H_2O)_2$ 착물의 여기상태 수소 결합 동력학을 시간 의존 밀도 함수 이론(TDDFT) 법으로 연구하였다. 수소-결합된 착물에 대한 바닥 상태 및 다른 전자 여기 상태들 ($S_1$$T_1$)에서의 기하학적 구조와 IR 스펙트라를 밀도 함수 이론(DFT)와 TDDFT 방법을 사용하여 계산하였다. 페놀과 두 물분자 간에 3개의 수소 결합으로 구성된 고리가 형성되었다. 세 개의 수소 결합에서 분자간 수소결합 $O_1-H_2{\cdots}O_3-H$$S_1$ 그리고 $T_1$ 상태에서 더 강해졌지만, 수소결합 $O_5-H_6{\cdots}O_1-H$$S_1$$T_1$상태에서 약해졌다. 이러한 결과들은 다른 전자 상태에서 수소 결합과 hydrogen-bonding groups의 결합 길이의 변화를 이론적으로 모니터링하여 얻었다. 수소 결합 $O_1-H_2{\cdots}O_3-H$$S_1$$T_1$ 상태 모두에서 강화된다는 것은 OH(phenol)의 계산된 신축 진동 모드가 광 여기에 의해 적색-이동한다는 것으로부터 확인 되었다. 전자 여기 상태에서 수소 결합이 강해지고 약해지는 행동은 phenol-$(H_2O)_n$의 다른 고리 구조에 존재할 수 있다.

고전압용 리튬이차전지 바인더 개발을 위한 시뮬레이션 및 전기화학 평가 비교를 통한 산화분해전압 예측 연구 (The Study on Prediction of Oxidative Decomposition Potential by Comparison between Simulation and Electrochemical Methods to Develop the Binder for High-voltage Lithium-ion Batteries)

  • 유지민;알렉세이 카사에프;이맹은
    • 전기화학회지
    • /
    • 제16권3호
    • /
    • pp.177-183
    • /
    • 2013
  • 고전압에서도 사용 가능한 바인더 개발에 대한 요구가 증대됨에 따라 이에 적합한 내산화성이 우수한 바인더를 양자화학적 모델링에 기반하여 제안하고자 하였다. 각 고분자 poly(acryl amide)(PAM), poly(methyl acrylate)(PMA), poly(vinylidene fluoride)(PVDF), poly(hexafluropropylene)(PHFP)에 대하여 반경험적 방법(Semi-empirical method) 및 밀도범함수 이론(Density Functional Theory, DFT) 방법을 이용하여 단량체부터 사량체까지의 고분자 바인더에 대한 최고 점유 분자 궤도함수(Highest occupied molecular orbital, HOMO) 에너지와 이온화 에너지(Ionization Potential, IP) 값을 구하여 실험 값과 비교하였다. 밀도범함수 방법으로 해석한 결과, PHFP, PVDF, PMA, PAM 순으로 고분자의 내산화성이 좋은 것으로 시뮬레이션을 통해 예측되었고, 이러한 결과는 선형 훑음 전압-전류법(Linear Sweep Voltametry, LSV)으로부터 얻은 실험값과 일치하였다. 또한 이 결과는 HOMO 오비탈의 구조를 분석하여 내산화성이 좋은 원인을 규명하였다.

전기방사 후 탄소화된 폴리아크릴로니트릴(PAN) 나노섬유의 수용액 중 붕소 흡착 (Aqueous Boron Adsorption on Carbonized Nanofibers Prepared from Electrospun Polyacrylonitrile(PAN) Mats)

  • 홍소희;한선기;김수영;원용선
    • 청정기술
    • /
    • 제28권3호
    • /
    • pp.210-217
    • /
    • 2022
  • 붕소(Boron)은 희소자원으로 유리, 반도체 재료, 화약 등 다양한 용도로 사용되고 있는데, 우리나라의 경우 붕소를 전량 수입에 의존하고 있으며 전 세계 붕소 매장량과 현재 추세의 생산량을 고려하면 50년 이후 지상의 붕소는 고갈될 확률이 높다. 따라서 안정적 붕소의 공급을 위해 해수 내의 붕소를 회수할 수 있는 소재 및 공정의 개발이 요구된다. 이에 본 연구에서는 수용액 중 붕소를 회수하기 위한 소재로 전기방사 후 탄소화된 폴리아크릴로니트릴(polyacrylonitrile, PAN) 나노섬유를 도입하였다. 먼저 탄소섬유 표면의 붕소 흡착 기작을 이론적으로 구현하기 위해 범밀도함수이론(density functional method) 기반의 분자모델링 작업을 수행하였는데, 계산된 에너지도(energetics)에 따르면 붕소가 탄소섬유 표면에 흡착되는 화학반응이 가능한(viable) 것으로 판단되었다. 한편 전기방사로 제작된 PAN 나노섬유를 대기 중에서 안정화를 진행한 후 아르곤(Ar) 분위기에서 탄소화하였고 붕산 수용액에 담지시켰다. SEM과 Raman 분석을 통해 각각 전기방사와 탄소화가 잘 진행되었는지 확인하였고, XPS 분석을 통해 탄소섬유 표면에 질소가 잘 도핑되었는지 여부와 붕소의 흡착 여부를 확인하였다. 결과적으로 전기방사된 PAN으로부터 제작된 탄소섬유는 해수 내 붕소 회수에 사용될 수 있는 소재로 판단된다.

DFT Study of CO2 Adsorption on the Zn12O12 Nano-cage

  • Baei, Mohammad T.
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3722-3726
    • /
    • 2013
  • Covalent functionalization of a $Zn_{12}O_{12}$ nano-cage with $CO_2$ molecule in terms of energetic, geometry, and electronic properties was investigated by density functional theory method. For chemisorption configurations, the adsorption energy of $CO_2$ on the $Zn_{12}O_{12}$ nano-cage for the first $CO_2$ was calculated -1.25 eV with a charge transfer of 1.00|e| from the nano-cage to the $CO_2$ molecule. The results show that $CO_2$ molecule was significantly detected by pristine $Zn_{12}O_{12}$ nano-cage, therefore the nano-cage can be used as $CO_2$ storage. Also, more efficient binding could not be achieved by increasing the $CO_2$ concentration. For Physisorption configurations, HOMO-LUMO gap of the configurations has not changed, while slight changes have been observed in the chemisorption configurations.

A Density Functional Study of Furofuran Polymers as Potential Materials for Polymer Solar Cells

  • Xie, Xiao-Hua;Shen, Wei;He, Rong-Xing;Li, Ming
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권10호
    • /
    • pp.2995-3004
    • /
    • 2013
  • The structural, electronic, and optical properties of poly(3-hexylthiophene) (P3HT) have been comprehensively studied by density functional theory (DFT) to rationalize the experimentally observed properties. Rather, we employed periodic boundary conditions (PBC) method to simulate the polymer block, and calculated effective charge mass from the band structure calculation for describing charge transport properties. The simulated results of P3HT are consistent with the experimental results in band gaps, absorption spectra, and effective charge mass. Based on the same calculated methods as P3HT, a series of polymers have been designed on the basis of the two types of building blocks, furofurans and furofurans substituted with cyano (CN) groups, to investigate suitable polymers toward polymer solar cell (PSC) materials. The calculated results reveal that the polymers substituted with CN groups have good structural stability, low-lying FMO energy levels, wide absorption spectra, and smaller effective masses, which are due to their good rigidity and conjugation in comparison with P3HT. Besides, the insertion of CN groups improves the performance of PSC. Synthetically, the designed polymers PFF1 and PFF2 are the champion candidates toward PSC relative to P3HT.

Electronic Structure of Ce-doped ZrO2 Film: Study of DFT Calculation and Photoelectron Spectroscopy

  • Jeong, Kwang Sik;Song, Jinho;Lim, Donghyuck;Kim, Hyungsub;Cho, Mann-Ho
    • Applied Science and Convergence Technology
    • /
    • 제25권1호
    • /
    • pp.19-24
    • /
    • 2016
  • In this study, we evaluated the change of electronic structure during redox process in cerium-doped $ZrO_2$ grown by sol gel method. By sol-gel method, we could obtain cerium-doped $ZrO_2$ in high oxygen partial pressure and low temperature. After post annealing process in nitrogen ambient, the film is deoxidized. We used spectroscopic and theoretical methods to analysis change of electronic structure. X-ray absorption spectroscopy (XAS) for O K1-edge and Density Functional Theory (DFT) calculation using VASP code were performed to verify the electronic structure of the film. Also, high resolution x-ray photoelectron spectroscopy (HRXPS) for Ce 3d was carried out to confirm chemical bond of cerium doped $ZrO_2$. Through the investigation of the electronic structure, we verified as followings. (1) During reduction process, binding energy of oxygen is increase. Simultaneously, oxidation state of cerium was change to 4+ to 3+. (2) Cerium 4+ and cerium 3+ states were generated at different energy level. (3) Absorption states in O K edge were mainly originated by Ce 4+ $f_0$ and Ce 3+, while occupied states in valance band were mainly originated from Ce 4+ $f_2$.