• Title/Summary/Keyword: Density functional calculation

Search Result 122, Processing Time 0.029 seconds

Blue Luminescent Center in Undoped ZnO Thin Films Grown by Plasma-assisted Molecular Beam Epitaxy (플라즈마 보조 분자선 적층 성장법으로 성장한 ZnO 박막의 청색 발광 중심)

  • Kim, Jong-Bin;No, Young-Soo;Byun, Dong-Jin;Park, Dong-Hee;Choi, Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.281-287
    • /
    • 2009
  • ZnO thin film was grown on a sapphire single crystal substrate by plasma assisted molecular beam epitaxy. In addition to near band edge (NBE) emissions, both blue and green luminescences are also observed together. The PL intensity of the blue luminescence (BL) range from 2.7 to 2.9 eV increased as the amount of activated oxygen increased, but green luminescence (GL) was weakly observed at about 2.4 eV without much change in intensity. This result is quite unlike previous studies in which BL and GL were regarded as the transition between shallow donor levels such as oxygen vacancy and interstitial zinc. Based on the transition level and formation energy of the ZnO intrinsic defects predicted through the first principle calculation, which employs density functional approximation (DFA) revised by local density approximation (LDA) and the LDA+U approach, the green and blue luminescence are nearly coincident with the transition from the conduction band to zinc vacancies of $V^{2-}_{Zn}$ and $V^-_{Zn}$, respectively.

First-principles Study on the Magnetic Properties of Gd doped Bithmuth-Telluride (Gd 도핑된 비스무스 텔루라이드의 자기적 성질에 대한 제일원리 계산 연구)

  • Van Quang, Tran;Kim, Miyoung
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.2
    • /
    • pp.39-44
    • /
    • 2016
  • Determination of the structural, electronic, and magnetic properties of the magnetically doped bismuth-telluride alloys are drawing lots of interest in the fields of the thermoelectric application as well as the research on magnetic interaction and topological insulator. In this study, we performed the first-principles electronic structure calculations within the density functional theory for the Gd doped bismuth-tellurides in order to study its magnetic properties and magnetic phase stability. All-electron FLAPW (full-potential linearized augmented plane-wave) method is employed and the exchange correlation potentials of electrons are treated within the generalized gradient approximation. In order to describe the localized f-electrons of Gd properly, the Hubbard +U term and the spin-orbit coupling of the valence electrons are included in the second variational way. The results show that while the Gd bulk prefers a ferromagnetic phase, the total energy differences between the ferromagnetic and the antiferromagnetic phases of the Gd doped bismuth-telluride alloys are about ~1meV/Gd, indicating that the stable magnetic phase may be changed sensitively depending on the structural change such as defects or strains.

Prediction of Pathway and Toxicity on Dechlorination of PCDDs by Linear Free Energy Relationship (다이옥신의 환원적 탈염화 분해 경로와 독성 변화예측을 위한 LFER 모델)

  • Kim, Ji-Hun;Chang, Yoon-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.125-131
    • /
    • 2009
  • Reductive dechlorination of polychlorinated dibenzo-p-dioxins (PCDDs) and its toxicity change were predicted by the linear free energy relationship (LFER) model to assess the zero-valent iron (ZVI) and anaerobic dechlorinating bacteria (ADB) as electron donors in PCDDs dechlorination. Reductive dechlorination of PCDDs involves 256 reactions linking 76 congeners with highly variable toxicities, so is challenging to assess the overall effect of this process on the environmental impact of PCDD contamination. The Gibbs free energies of PCDDs in aqueous solution were updated to density functional theory (DFT) calculation level from thermodynamic results of literatures. All of dechlorination kinetics of PCDDs was evaluated from the linear correlation between the experimental dechlorination kinetics of PCDDs and the calculated thermodynamics of PCDDs. As a result, it was predicted that over 100 years would be taken for the complete dechlorination of octachlorinated dibenzo-p-dioxin (OCDD) to non-chlorinated compound (dibenzo-p-dioxin, DD), and the toxic equivalent quantity (TEQ) of PCDDs could increase to 10 times larger from initial TEQ with the dechlorination process. The results imply that the single reductive dechlorination using ZVI or ADB is not suitable for the treatment strategy of PCDDs contaminated soil, sediment and fly ash. This LFER approach is applicable for the prediction of dechlorination process for organohalogen compounds and for the assessment of electron donating system for treatment strategies.

Crystal Structure and Tautomerism Study of the Mono-protonated Metformin Salt

  • Wei, Xiaodan;Fan, Yuhua;Bi, Caifeng;Yan, Xingchen;Zhang, Xia;Li, Xin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3495-3501
    • /
    • 2014
  • A novel crystal, the mono-protonated metformin acetate (1), was obtained and characterized by elemental analysis, IR spectroscopy and X-ray crystallography. It was found that one of the imino group in the metformin cation was protonated along with the proton transfer from the secondary amino group to the other imino group. Its crystal structure was then compared with the previously reported diprotonated metformin oxalate (2). The difference between them is that the mono-protonated metformin cations can be linked by hydrogen bonding to form dimers while the diprotonated metformin cations cannot. Both of them are stabilized by intermolecular hydrogen bonds to assemble a 3-D supermolecular structure. The four potential tautomer of the mono-protonated metformin cation (tautomers 1a, 1b, 1c and 1d) were optimized and their single point energies were calculated by Density Functional Theory (DFT) B3LYP method based on the Polarized Continuum Model (PCM) in water, which shows that the most likely existed tautomer in human cells is the same in the crystal structure. Based on the optimized structure, their Wiberg bond orders, Natural Population Analysis (NPA) atomic charges, molecular electrostatic potential (MEP) maps were calculated to analyze their electronic structures, which were then compared with the corresponding values of the diprotonated metformin cation (cation 2) and the neutral metformin (compound 3). Finally, the possible tautomeric mechanism of the mono-protonated metformin cation was discussed based on the observed phenomena.

Synthesis, Crystal Structure and Quantum Chemistry of a Novel Schiff Base N-(2,4-Dinitro-phenyl)-N'-(1-phenyl-ethylidene)-hydrazine

  • Ji, Ning-Ning;Shi, Zhi-Qiang;Zhao, Ren-Gao;Zheng, Ze-Bao;Li, Zhi-Feng
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.881-886
    • /
    • 2010
  • A novel Schiff base N-(2,4-dinitro-phenyl)-N'-(1-phenyl-ethylidene)-hydrazine has been synthesized and structurally characterized by X-ray single crystal diffraction, elemental analysis, IR spectra and UV-vis spectrum. The crystal belongs to monoclinic with space group P21/n. The molecules are connected via intermolecular O-$H{\cdots}O$ hydrogen bonds into 1D infinite chains. The crystal structure is consolidated by the intramolecular N-$H{\cdots}O$ hydrogen bonds. weak intermolecular C-$H{\cdots}O$ hydrogen bonds link the molecules into intriguing 3D framework. Furthermore, Density functional theory (DFT) calculations of the structure, stabilities, orbital energies, composition characteristics of some frontier molecular orbitals and Mulliken charge distributions of the title compound were performed by means of Gaussian 03W package and taking B3LYP/6-31G(d) basis set. The time-dependent DFT calculations have been employed to calculate the electronic spectrum of the title compound, and the UV-vis spectra has been discussed on this basis. The results show that DFT method at B3LYP/6-31G(d) level can well reproduce the structure of the title compound.

Expansion of Sensitivity Analysis for Statistical Moments and Probability Constraints to Non-Normal Variables (비정규 분포에 대한 통계적 모멘트와 확률 제한조건의 민감도 해석)

  • Huh, Jae-Sung;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1691-1696
    • /
    • 2010
  • The efforts of reflecting the system's uncertainties in design step have been made and robust optimization or reliabilitybased design optimization are examples of the most famous methodologies. The statistical moments of a performance function and the constraints corresponding to probability conditions are involved in the formulation of these methodologies. Therefore, it is essential to effectively and accurately calculate them. The sensitivities of these methodologies have to be determined when nonlinear programming is utilized during the optimization process. The sensitivity of statistical moments and probability constraints is expressed in the integral form and limited to the normal random variable; we aim to expand the sensitivity formulation to nonnormal variables. Additional functional calculation will not be required when statistical moments and failure or satisfaction probabilities are already obtained at a design point. On the other hand, the accuracy of the sensitivity results could be worse than that of the moments because the target function is expressed as a product of the performance function and the explicit functions derived from probability density functions.

$Cs^+$이온 반응성 산란에 의한 Si(111)-7$\times$7 표면에서의 산소 흡착 연구

  • Kim, Gi-Yeo;Kang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.153-153
    • /
    • 2000
  • Si 산화는 반도체 공정상 필요한 과정으로 산업적으로나 학문적으로 중요하고 많이 연구되었다. 이중에서 Si(1110-7x7표면에서 초기 흡착된 산소는 준안정적 상태로 존재하며 표면온도, 산소의 노출량 그리고 진공도에 따라 그 수명이 제한된다. 이러한 준안정적 상태의 산소의 화학적 성질은 여러 표면분석장비가 동원되어 연구되었으나 아직까지 논쟁이 되고 있다. 이 경우 산소가 어떤 상태로 존재하는가는 표면화학종을 검출함으로서 해결될 수 있다. 저에너지 Cs+ 이온 반응성 산란은 이러한 요구를 충족시킬수 있는 가장 적합한 실험 방법중의 하나이다. 저에너지 Cs+ 이온 산란의 특징 중의 하나는 입사된 Cs+ 이온이 표면에 흡착된 화학종과 충돌후 탈착되면서 반응을 하여 송이 이온을 형성한다는 것이다. 이 송이 이온을 관측함으로서 표면에 존재하는 화학종을 알아 낼 수 있다. 이에 산소가 흡착된 Si(111)-7x7 표면에서의 산소의 준안정적 상태가 저에너지 Cs+ 이온 산란 실험을 통하여 연구되었다. 실험은 0.2-2L(1Langmuir = 10-6 Torr x 1 sec) 산소 노출량과 -15$0^{\circ}C$ - $25^{\circ}C$의 표면온도 그리고 5eV - 20eV의 Cs+ 이온 충돌에너지에서 CsSiO+ 이온이 유일한 생산물로서 검출되었다. CsSiO+ 이온은 입사된 Cs+ 이온과 표면에 존재하는 SiO 분자가 충돌 후 반응하여 탈착된 것으로 생각된다. 이것은 낮은 산소 노출량 즉, 초기 산화 단계에서 SiO가 표면에 존재한다는 것을 의미한다. 즉, 산소 분자는 산화단계의 초기에 해리되어 표면에 흡착되고 선구물질인 SiO를 형성함을 제시한다. 최근의 이론적 계산인 density functional calculation에서도 산소분자가 Si(111)-7$\times$7 표면의 준안정적 산화상태의 선구물질일 가능성을 배제한다. 이는 본 저에너지 Cs+ 이온 반응성 산란실험을 뒷받침하는 계산 결과이다. 높은 Cs+ 이온 충돌에너지에서 CsSi+, Si+, SiO+, Si2+, Si2O+ 등이 추가로 검출되었다. 이는 CsSi 이온을 제외하고 수 keV의 충돌에너지를 사용하는 이차 이온 질량 분석법과 비슷한 결과이다.

  • PDF

Synthesis, Crystal Structure and Theoretical Calculation of a Novel Nickel(II) Complex with Dibromotyrosine and 1,10-Phenanthroline

  • Huang, Guimei;Zhang, Xia;Fan, Yuhua;Bi, Caifeng;Yan, Xingchen;Zhang, Zhongyu;Zhang, Nan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2889-2894
    • /
    • 2013
  • A new complex [$Ni(phen)(C_9H_8Br_2NO_3)_2{\cdot}2CH_3OH{\cdot}2H_2O$] [phen: 1,10-phenanthroline $C_9H_8Br_2NO_3$: 3,5-dibromo-L-tyrosine] was synthesized and characterized by IR, elemental analysis and single crystal X-ray diffraction. X-ray crystallography shows that Ni(II) ion is six-coordinated. The Ni(II) ion coordinates with four nitrogen atoms and two oxygen atoms from three ligands, forming a mononuclear Ni(II) complex. The crystal crystallizes in the Orthorhombic system, space group $P2_12_12$ with a = 12.9546 ${\AA}$, b = 14.9822 ${\AA}$, c = 9.9705 ${\AA}$, V = 1935.2 ${\AA}$, Z = 1, F(000) = 1008, S = 0.969, ${\rho}_{calcd}=1.742g{\cdot}cm^{-3}$, ${\mu}=4.688mm^{-1}$, $R_1$ = 0.0529 and $wR_2$ = 0.0738 for 3424 observed reflections (I > $2{\sigma}(I)$). Theoretical study of the title complex was carried out by density functional theory (DFT) method and the B3LYP method employing the $6-3l+G^*$ basis set. The energy gap between HOMO and LUMO indicates that this complex is prone to interact with DNA. CCDC: 908041.

Theoretical Investigation for the Adsorption of Various Gases (COx, NOx, SOx) on the BN and AlN Sheets (N과 AlN 시트에 다양한 기체(COx, NOx, SOx)의 흡착에 관한 이론 연구)

  • Kim, Sung-Hyun;Kim, Baek-Jin;Shin, Chang-Ho;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.1
    • /
    • pp.16-24
    • /
    • 2017
  • The adsorption of various atmospheric harmful gases ($CO_x$, $NO_x$, $SO_x$) on graphene-like boron nitride(BN) and aluminum nitride(AlN) sheets was theoretically investigated using density functional theory (DFT) and MP2 methods. The structures were fully optimized at the $B3LYP/6-31G^{**}$ and $CAM-B3LYP/6-31G^{**}$ levels of theory and confirmed to be a local minimum by the calculation of the harmonic vibrational frequencies. The MP2 single-point binding energies were computed at the $CAM-B3LYP/6-31G^{**}$ optimized geometries. Also the zero-point vibrational energy (ZPVE) and 50%-basis set superposition error (BSSE) corrections were included. The adsorptions of gases on the BN sheet were predicted to be a physisorption process and the adsorptions of gases on the AlN sheet were predicted to be a physisorption process for $CO_x$ and $NO_x$ but to be a chemisorption process for $SO_x$.

Dependency of Generator Performance on T1 and T2 weights of the Input MR Images in developing a CycleGan based CT image generator from MR images (CycleGan 딥러닝기반 인공CT영상 생성성능에 대한 입력 MR영상의 T1 및 T2 가중방식의 영향)

  • Samuel Lee;Jonghun Jeong;Jinyoung Kim;Yeon Soo Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.1
    • /
    • pp.37-44
    • /
    • 2024
  • Even though MR can reveal excellent soft-tissue contrast and functional information, CT is also required for electron density information for accurate dose calculation in Radiotherapy. For the fusion of MRI and CT images in RT treatment planning workflow, patients are normally scanned on both MRI and CT imaging modalities. Recently deep-learning-based generations of CT images from MR images became possible owing to machine learning technology. This eliminated CT scanning work. This study implemented a CycleGan deep-learning-based CT image generation from MR images. Three CT generators whose learning is based on T1- , T2- , or T1-&T2-weighted MR images were created, respectively. We found that the T1-weighted MR image-based generator can generate better than other CT generators when T1-weighted MR images are input. In contrast, a T2-weighted MR image-based generator can generate better than other CT generators do when T2-weighted MR images are input. The results say that the CT generator from MR images is just outside the practical clinics and the specific weight MR image-based machine-learning generator can generate better CT images than other sequence MR image-based generators do.