• 제목/요약/키워드: Density current

검색결과 5,717건 처리시간 0.033초

Synthesis and Magnetic Properties of Electrodeposited Cobalt-Iron-Vanadium Thin Films

  • Chae, Kwang-Pyo
    • Journal of Magnetics
    • /
    • 제11권2호
    • /
    • pp.87-89
    • /
    • 2006
  • CoFeV thin film alloys were fabricated by electrodeposition, and the dependences of their magnetic properties on the current density were investigated using an X-ray diffractometer and a vibrating sample magnetometer. The deposited Co increased from about 45 to 60 wt.% with increasing current density until $25mA/cm^2$ whereas the deposited Fe decreased from about 55 to 40 wt.% with increasing current density until $25mA/cm^2$. The deposited V, about 2 wt.%, was independent of the current density. The current efficiencies of electrodeposition decreased linearly from about 40 to 29% with increasing current density. The X-ray diffraction measurement showed that all peaks of the CoFeV films were consistent with those of a typical Co hcp and Fe bcc mixed phase. An increase in the current density decreased the grain size and increased the lattice constant. The saturation magnetization increased from about 2.2 to 2.5 T with increasing current density. The coercivity measured in the perpendicular direction decreased from 260 to 120 Oe with increasing current density; a drastic drop of 60 Oe occurred at $5mA/cm^2$. The coercivity measured in the in-plane direction remained almost unchanged, at about 20 Oe, with increasing current density.

고속도금된 3가 크롬도금의 전류효율 및 조직특성에 미치는 첨가제의 영향 (The Effect of Additives on the Current Efficiency and the Microstructure of Trivalent Cr Electrodeposits Plated in Flow Cell System)

  • 예길촌;서경훈
    • 한국표면공학회지
    • /
    • 제37권2호
    • /
    • pp.92-98
    • /
    • 2004
  • The current efficiency and the microstructure of the trivalent Cr deposits plated in flow cell system were investigated according to additives in sulfate bath and current density. The current efficiency of the deposits plated in the formic acid complexed bath was noticeably higher than that of the deposits from glycine complexed bath. The current efficiency of the deposits from the complexed baths with boric acid buffer increased linearly with current density in the range of 60-100 A/dm$^2$, while that of the deposits from the baths with both Al sulfate and mixed buffers increased parabolically with current density. The nodular crystallite size of the deposits increased with current density, and the deposits plated in low current density region had relatively smooth surface appearance with fine grains. The structure of the deposits from the complexed baths with boric acid buffer changed from amorphous structure to crystalline one with strong (110)peak with increasing current density. The deposits from the baths with both Al sulfate and mixed buffers had generally amorphous structure.

Magnetic Resonance Imaging of a Current Density Component

  • Oh, Suk-Hoon;Park, Tae-Seok;Han, Jae-Yong;Lee, Soo-Yeol
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권3호
    • /
    • pp.183-188
    • /
    • 2004
  • Magnetic resonance current density imaging (MRCDI) is a useful method for measuring electrical current density distribution inside an object. To avoid object rotations during the conventional MRCDI scans, we have reconstructed current density component images by applying a spatial filter to the magnetic field data measured both inside and outside the object. To measure the magnetic field outside the object with MRI, we immersed the object in a water tank. To evaluate accuracy of the current density imaging, we have made a conductivity phantom with a corresponding finite element method model. We have compared the experimentally obtained current density images with the ones calculated by the finite element method. The average errors of the reconstructed current density images were 6.6 ∼ 45.4 % when the injected currents were 1 ∼ 24 mA. We expect that the current density component imaging technique can be used in diverse biomedical applications such as electrical therapy system developments and biological electrical safety analysis.

구리 박막의 표면형상과 물성에 대한 전류밀도 영향 (Property and Surface Morphology of Copper Foil on the Current Density)

  • 우태규;박일송;정광희;설경원
    • 한국재료학회지
    • /
    • 제20권10호
    • /
    • pp.555-558
    • /
    • 2010
  • This study examined the effect of current density on the surface morphology and physical properties of copper plated on a polyimide (PI) film. The morphology, crystal structure, and electric characteristics of the electrodeposited copper foil were examined by scanning electron microscopy, X-ray diffraction, and a four-point probe, respectively. The surface roughness, crystal growth orientation and resistivity was controlled using current density. Large particles were observed on the surface of the copper layer electroplated onto a current density of 25 mA/$cm^2$. However, a uniform surface and lower resistivity were obtained with a current density of 10 mA/$cm^2$. One of the important properties of FCCL is the flexibility of the copper foil. High flexibility of FCCL was obtained at a low current density rather than a high current density. Moreover, a reasonable current density is 20 mA/$cm^2$ considering the productivity and mechanical properties of copper foil.

유한요소해석을 이용한 전주공정에서의 전류밀도 분포 예측 (Estimate of Current Density Distribution in Electroforming Process Using Finite Element Analysis)

  • 강대철;김헌영;전병희
    • 소성∙가공
    • /
    • 제13권3호
    • /
    • pp.279-284
    • /
    • 2004
  • Electroforming is the highly specialized use of electrodeposition for the manufacture of metal parts and basically a specialized form of electroplating. So, we can apply electrochemical system analysis for electroforming process. Electrochemical systems are concerned with the interplay between electricity and chemistry, namely the measurements of electrical quantities, such as current density, potential, and charge, and their relationship to chemical parameters. This paper based on the basic equations of electrics and electrochemical kinetics, was employed for a theoretical explanation of the current density distribution on electroforming process. We calculated current density distribution and potential distribution on cathode. Also, calculated current density distribution of vertical direction. It was shown that current density is related with distance of between anode and cathode and mass transfer process.

전기자동차 배터리 하우징용 6061-T6 알루미늄합금의 전식 특성에 미치는 염화물농도 및 인가전류밀도의 영향 (Effects of Chloride Concentration and Applied Current Density on Stray Current Corrosion Characteristics of 6061-T6 Al Alloy for Electric Vehicle Battery Housing)

  • 신동호;김성종
    • Corrosion Science and Technology
    • /
    • 제21권5호
    • /
    • pp.348-359
    • /
    • 2022
  • Interest in electric vehicle is on the rise due to global eco-friendly policies. To improve the efficiency of electric vehicles, it is essential to reduce weights of components. Since electric vehicles have various electronic equipment, the research on stray current corrosion is required. In this research, a galvanostatic corrosion experiment was performed on 6061-T6 Al alloy for electric vehicle battery housing using chloride concentration and applied current density as variables in a solution simulating an acid rain environment. As a result of the experiment, when chloride concentration and applied current density were increased, corrosion damage became larger. In particular, pitting damage was dominant at an applied current density of 0.1 mA/cm2. Pitting damage over the entire surface was found at a current density of 1.0 mA/cm2. In conclusion, chloride concentration had a relatively large effect on localized corrosion. The applied current density had a great effect on uniform corrosion. However, in the case of applied current density, localized corrosion was also greatly affected by interaction with chloride.

Si 태양전지(太陽電池)의 표면재결합(表面再結合) 전류(電流)가 포화전류(飽和電流)에 미치는 영향(影響) (The Effect of Surface Recombination Current on the Saturation Current in Si Solar Cell)

  • 신기식;이기선;최병호
    • 태양에너지
    • /
    • 제8권2호
    • /
    • pp.12-18
    • /
    • 1988
  • The effect of surface recombination current density on the saturation current density in Si solar cell has been studied. Theoretical model for surface recombination current was set up from emitter transparent model of M.A. Shibib, and saturation current of Si solar cell made by ion implantation method was also measured by digital electrometer. The theoretical surface recombination current density which is the same as saturation surface recombination current density in Shibib model was $10^{-11}[A/cm^2]$ and the measured value was ranged from $8{\times}10^{-10}$ to $2{\times}10^{-9}[A/cm^2]$. Comparing with the ideal p-n junction of Shockley, transparent emitter model shows improved result by $10^2$ order of saturation current density. But there still exists $10^2$ order of difference of saturation current density between theoretical and actual values, which are assumed to be caused by 1) leakage current through solar cell edge, 2) recombination of carriers in the depletion layer, 3) the series resistance effect and 4) the tunneling of carriers between states in the band gap.

  • PDF

PEM 연료전지 평행류 채널에서 Baffle의 영향 (Effects of baffles through the parallel flow channel in a PEM fuel cell)

  • 오창묵;이규정
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.9-14
    • /
    • 2008
  • The effects of baffles in PEM fuel cell with parallel flow channel has been simulated by using conmmercial program. The simulation has been conducted through the channel and there are four different heights of baffles, No Baffle($H_b$=0), Partially Blocked Baffle(0.25, 0.5, 0.75), Fully Blocked Baffle(1) conditions. The result shows that current density changes while placing a baffle at the various positions along the channel. Current density with a single baffle is higher than that without baffle and current density using Fully Blocked Baffle(FBB) is much higher than current density using Partially Blocked Baffle(PBB). When the baffle is closer to outlet of the channel, current density increases. It is found that pressure is related to current density. If the pressure is higher, the better performance will be expected.

  • PDF

팔라디움-니켈 합금전착층의 조성 및 조직에 미치는 파형전류인자의 영향 (The effect of pulse parameters on the composition and the structure of Palladium-Nickel alloy electrodeposits)

  • 예길촌;오유청
    • 한국표면공학회지
    • /
    • 제27권5호
    • /
    • pp.285-291
    • /
    • 1994
  • The effects of pulse current parameters on the composition and the microstructure of Pd-Ni alloy electrodeposits were studied. The cathode current efficiency of p.c. electrolysis conditions decreased with increasing both mean and peak current density and was lower than those under D.C. electrolysis condition. Palladium content of Pd-Ni alloy increased with increasing both peak current density and on-time, while it decreased with increasing mean current density and duty cycle. The preferred orientation of Pd-Ni alloys changed with increasing mean current density in the sequence of (111)+(110).(100) or (110)longrightarrow(111)longrightarrow(100) or random distribution of crystal structure. The surface morphology of Pd-Ni alloy changed mainly according to the mean current density and was related to the preferred orientation.

  • PDF

3D패키지용 Via 구리충전 시 전류밀도와 유기첨가제의 영향 (Effects of Current Density and Organic Additives on via Copper Electroplating for 3D Packaging)

  • 최은혜;이연승;나사균
    • 한국재료학회지
    • /
    • 제22권7호
    • /
    • pp.374-378
    • /
    • 2012
  • In an effort to overcome the problems which arise when fabricating high-aspect-ratio TSV(through silicon via), we performed experiments involving the void-free Cu filling of a TSV(10~20 ${\mu}m$ in diameter with an aspect ratio of 5~7) by controlling the plating DC current density and the additive SPS concentration. Initially, the copper deposit growth mode in and around the trench and the TSV was estimated by the change in the plating DC current density. According to the variation of the plating current density, the deposition rate during Cu electroplating differed at the top and the bottom of the trench. Specifically, at a current density 2.5 mA/$cm^2$, the deposition rate in the corner of the trench was lower than that at the top and on the bottom sides. From this result, we confirmed that a plating current density 2.5 mA/$cm^2$ is very useful for void-free Cu filling of a TSV. In order to reduce the plating time, we attempted TSV Cu filling by controlling the accelerator SPS concentration at a plating current density of 2.5 mA/$cm^2$. A TSV with a diameter 10 ${\mu}m$ and an aspect ratio of 7 was filled completely with Cu plating material in 90 min at a current density 2.5 mA/$cm^2$ with an addition of SPS at 50 mg/L. Finally, we found that TSV can be filled rapidly with plated Cu without voids by controlling the SPS concentration at the optimized plating current density.