Browse > Article
http://dx.doi.org/10.14773/cst.2022.21.5.348

Effects of Chloride Concentration and Applied Current Density on Stray Current Corrosion Characteristics of 6061-T6 Al Alloy for Electric Vehicle Battery Housing  

Shin, Dong-Ho (Graduate school, Mokpo national maritime university)
Kim, Seong-Jong (Division of marine engineering, Mokpo national maritime university)
Publication Information
Corrosion Science and Technology / v.21, no.5, 2022 , pp. 348-359 More about this Journal
Abstract
Interest in electric vehicle is on the rise due to global eco-friendly policies. To improve the efficiency of electric vehicles, it is essential to reduce weights of components. Since electric vehicles have various electronic equipment, the research on stray current corrosion is required. In this research, a galvanostatic corrosion experiment was performed on 6061-T6 Al alloy for electric vehicle battery housing using chloride concentration and applied current density as variables in a solution simulating an acid rain environment. As a result of the experiment, when chloride concentration and applied current density were increased, corrosion damage became larger. In particular, pitting damage was dominant at an applied current density of 0.1 mA/cm2. Pitting damage over the entire surface was found at a current density of 1.0 mA/cm2. In conclusion, chloride concentration had a relatively large effect on localized corrosion. The applied current density had a great effect on uniform corrosion. However, in the case of applied current density, localized corrosion was also greatly affected by interaction with chloride.
Keywords
Electric vehicle battery housing; 6061-T6 Al alloy; Stray current corrosion; Corrosion resistance; Chloride concentration;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 S. Arora, W. Shen, and A. Kapoor, Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles, Renewable and Sustainable Energy Reviews, 60, 1319 (2016). Doi: http://dx.doi.org/10.1016/j.rser.2016.03.013   DOI
2 I. W. Huang, B. L. Hurley, F. Yang, R. G. Buchheit, Dependence on Temperature, pH, and Cl- in the Uniform Corrosion of Aluminum Alloys 2024-T3, 6061-T6, and 7075-T6, Electrochemica Acta, 199, 242 (2016). Doi: http://dx.doi.org/10.1016/j.electacta.2016.03.125   DOI
3 J. R. Davis, Aluminum and aluminum alloys. 1, p. 31 USA: ASM International (1993).
4 C. Yang, G. Cui, Z. Li, Y. Zhao, and C. Zhang, Study the Influence of DC Stray Current on the Corrosion of X65 Steel Using Electrochemical Method, International Journal of Electrochemical Science, 10, 10223 (2015). http://www.electrochemsci.org/list15.htm#issue10   DOI
5 J. Szymenderski, W. Machczynski, and K. Budnik, Modeling Effects of Stochastic Stray Currents from D.C. Traction on Corrosion Hazard of Buried Pipelines, Energies, 12, 4570 (2019). Doi: https://doi.org/10.3390/en12234570   DOI
6 C. M. Costa, J. C. Barbosa, H. Castro, R. Goncalves, and S. L. Mendez, Electric vehicles: To what extent are environmentally friendly and cost effective? - Comparative study by european countries, Renewable and Sustainable Energy Reviews, 151, 111548 (2021). Doi: https://doi.org/10.1016/j.rser.2021.111548   DOI
7 B. Nykvist, F. Sprei, and M. Nilsson, Assessing the progress toward lower priced long range battery electric vehicles, Energy Policy, 123, 144 (2019). Doi: https://doi.org/10.1016/j.enpol.2018.09.035   DOI
8 E. Gultekin and M. Yahsi, Investigation of Lattice Structures for the Battery Pack Protection, International Journal of Automotive Science and Technology, 5, 331 (2021). Doi: https://doi.org/10.30939/ijastech..1020932   DOI
9 M. X. Milagre, M. S. Pereira, A. A. Gomes, M. Scapin, M. Franco, F. Yokaichiya, F. Genezini, and I. Costa, Corrosion characterization of the 6061 Al-Mg-Si alloy in synthetic acid rain using neutron tomography, Applied Radiation and Isotopes, 184, 110197 (2022). Doi: https://doi.org/10.1016/j.apradiso.2022.110197   DOI
10 S. R. Kumar, S. D. Krishnaa, M. D. Krishna, N. T. Gokulkumar, and A. R. Akilesh, Investigation on corrosion behaviour of aluminium 6061-T6 alloy in acidic, alkaline and salt medium, Materials Today : Proceedings, 45, 1878 (2021). Doi: https://doi.org/10.1016/j.matpr.2020.09.079   DOI
11 H. Y. Lee, S. H. Ahn, and H. T. Im, A Research on StrayCurrent Corrosion Mechanism of High Voltage Cable Connector on Electrification Vehicles, Corrosion Science and Technology, 18, 117 (2019). Doi: https://doi.org/10.14773/cst.2019.18.4.117   DOI
12 B. W. Lifka and D. O. Sprowls, An Improved Exfoliation Test for Aluminum Alloys, Electrochemica Acta, 1, 7 (1966). Doi: https://doi.org/10.5006/0010-9312-22.1.7   DOI
13 A. Chiba, I. Muto, Y. Sugawara, and N. Hara, Pit Initiation Mechanism at MnS Inclusions in Stainless Steel : Synergistic Effect of Elemental Sulfur and Chloride Ions, Journal of The Electrochemical Society, 160, 511 (2013). Doi: https://doi.org/10.1149/2.081310jes   DOI
14 ASTM G31-72, Standard Practice for Laboratory Immersion Corrosion 414 Testing of Metals, P.7, ASTM International, West Conshohocken, PA (2004).
15 G. Acosta, L. Veleva, J. L. Lopez, and D. A. L. Sauri, Contrasting initial events of localized corrosion on surfaces of 2219-T42 and 6061-T6 aluminum alloys exposed in Caribbean seawater, Transactions of Nonferrous Metals Society of China, 29, 34 (2019). Doi: https://doi.org/10.1016/S1003-6326(18)64912-X   DOI
16 V. S. Sinyavskii, Pitting and Stress Corrosions of Aluminum Alloys; Correlation between Them, Protection of Metals, 37, 469 (2001). Doi: https://doi.org/10.1023/A:1012374432246   DOI
17 M. Yasuda, F. Weinberg, and D. Tromans, Pitting Corrosion of Al and Al-Cu Single Crystals, Journal of The Electrochemical Society, 137, 3708 (1990). Doi: https://doi.org/10.1149/1.2086291   DOI
18 F. Eckermann, T. Suter, P. J. Uggowitzer, A. Afseth, and P. Schmutz, The influence of MgSi particle reactivity and dissolution processes on corrosion in Al-Mg-Si alloys, Electrochemica Acta, 54, 844 (2008). Doi: https://doi.org/10.1016/j.electacta.2008.05.078   DOI
19 V. Guillaumin and G. Mankowski, Localized corrosion of 2021 T351 aluminium alloy in chloride media, Corrosion Science, 41, 421 (1999). Doi: https://doi.org/10.1016/S0010-938X(98)00116-4   DOI
20 A. J. Davenport, Y. Yuan, R. Ambat, B. J. Connolly, M. Strangwood, A. Afseth, and G. Scamans, B. G. Pollet, Intergranular Corrosion and Stress Corrosion Cracking of Sensitised AA5182, Materials Science Forum, 519-521, 641 (2006). Doi: https://doi.org/10.4028/www.scientific.net/MSF.519-521.641   DOI
21 X. Zhang, M. Liu, F. Lu, M. Liu, Z. Sun, and Z. Tang, Atmospheric Corrosion of 7B04 Aluminum Alloy in Marine Environments, Corrosion Science and Technology, 17, 6 (2018). Doi: https://doi.org/10.14773/cst.2018.17.1.6   DOI
22 K. V. Akpanyung and R. T. Loto, Pitting corrosion evaluation : a review, Journal of Physics : Conference Series, 1378, 022088 (2019). Doi: https://doi.org/10.1088/1742-6596/1378/2/022088   DOI
23 L. Bertolini, M. Carsana, and P. Pedeferri, Corrosion behaviour of steel in concrete in the presence of stray current, Corrosion Science, 49, 1056 (2007). Doi: https://doi.org/10.1016/j.corsci.2006.05.048   DOI
24 D. A. Jones, Principles and prevention of corrosion, 2nd, pp. 156, 256, 257, 267, Prentice Hall, New Jersey (1996).
25 A. Toloei, V. Stoilov, and D. Northwood, The relationship between surface roughness and corrosion, Proceedings of the ASME 2013 International Mechanical Engineering Congress & Exposition, p. 1, The American Society of Mechanical Engineers, San Diego, Califonia, USA (2013). Doi: https://doi.org/10.1115/IMECE2013-65498   DOI
26 W. S. Tait, Handbook of Environmental Degradation of Materials, 3rd, pp. 97 - 115,William Andrew (2018). Doi: https://doi.org/10.1016/B978-0-323-52472-8.00005-8   DOI
27 M. A. Arshadi, J. B. Johnson, and G. C. Wood, The influence of an isobutane-SO2 pollutant system on the earlier stages of the atmospheric corrosion of metals, Corrosion Science, 23, 763 (1983). Doi: https://doi.org/10.1016/0010-938X(83)90039-227   DOI
28 A. L. Paulina, O. X. Octavio, G. L. Diego, V. L. Natalya, A. D. A. Marco, V. L. Irina, and A. E. Elsa, The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate, Materials, 7, 5711 (2014). Doi: https://doi.org/10.3390/ma7085711   DOI
29 Y. Guo, H. Tan, D. Wang, and T. Meng, Effects of alternating stray current on the corrosion behaviours of buried Q235 steel pipelines, Anti-Corrosion Methods and Materials, 64, 599 (2017).   DOI
30 J. L. Trompette, L. Arurault, S. Fontorbes, and L. Massot, Influence of the anion specificity on the electrochemical corrosion of anodized aluminum substrates, Electrochemica Acta, 55, 2901 (2010). Doi: https://doi.org/10.1016/j.electacta.2009.12.063   DOI
31 D. H. Shin and S. J. Kim, Investigation on Electrochemical Characteristics of Battery Housing Material for Electric Vehicles in Solution Simulating an Acid Rain Environment with Chloride Concentrations, Corrosion Science and Technology, 21, 147 (2022). Doi: https://doi.org/10.14773/cst.2022.21.2.147   DOI
32 B. H. Yoon, H. J. Kim, W. S. Chang, and Y. G. Kweon, and J. L. Shang, Corrosion Behavior of Arc Weld and Firction Stir Weld in Al 6061-T6 Alloys, Corrosion Science and Technology, 5, 196 (2006). http://www.corrosionkorea.org/publication/publication04_1_result.php?cs_titl e=Corrosion+behavior+of+arc+weld+and+friction+stir+weld+in+Al+6061-T6+alloys&cs_abstract=&cs_author=&cs_keyword=&cs_year_start=&cs_year_end=&x=60&y=13
33 C. Vargel, Corrosion of Aluminium, 2, p. 15, Elsevier (2004). https://www.elsevier.com/books/corrosion-of-aluminium/vargel/978-0-08-099925-8
34 B. Zaid, D. Saidi, A. Benzaid, and S. Hadji, Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy, Corrosion Science, 50, 1841 (2008). Doi: https://doi.org/10.1016/j.corsci.2008.03.00   DOI
35 W. Feng, Z. Dong, W. Liu, H. Cui, W. Tang, and F. Xing, An experimental study on the influence of applied voltage on current efficiency of rebars with a modified accelerated corrosion test, Cement and Concrete Composites, 122, 104120 (2021). Doi: https://doi.org/10.1016/j.cemconcomp.2021.104120   DOI