• 제목/요약/키워드: Density Functional Method(DFT)

검색결과 81건 처리시간 0.026초

탄소질 흡착제에 가스 상 분자의 흡착 특성에 대한 이론적 연구 (A theoretical study of the adsorption characteristics of gaseous molecules on the carbonaceous adsorbent)

  • 신창호;이영택;김정열;김승준
    • 분석과학
    • /
    • 제18권4호
    • /
    • pp.309-319
    • /
    • 2005
  • 본 연구는 흡착제와 기체상 분자의 흡착특성을 연구하기 위하여 탄소질 흡착제의 세공크기 및 흡착 온도와 압력에 따른 기체상 분자들의 흡착용량을 Crand Canonical Monte Carlo(GCMC) 분자모사 방법으로 예측하였다. 사용된 흡착질에 대한 분자구조 및 분자 분광학적 성질에 대해서는 범밀도함수이론(DFT)을 이용하여 계산하였다. 온도에 따른 흡착효과는 온도가 증가할수록 흡착량은 감소하는 경향을 보였으며, 흡착질의 크기, 극성, 그리고 흡착질간의 상호작용 등에 따라서도 흡착효과는 일정한 상관관계를 나타내는 것으로 예측되었다. 본 연구에 사용된 모든 경우에 대하여 탄소질 흡착제에 흡착되는 순서는 $NH_3$ < $H_2S$ < $CH_3SH$ 순으로 예측되었으며, 이러한 이론적 예측은 실험에 의한 관찰 결과와 정성적으로 잘 일치하는 것으로 나타났다.

액정 후보 물질로서 C16H16O3의 분자구조 및 전하이동성 특성분석에 관한 연구 (Theoretical investigation for the molecular structure and Charge transport property analysis of C16H16O3 as a candidate of liquid-crystal)

  • 박혜민;김승준
    • 분석과학
    • /
    • 제20권1호
    • /
    • pp.61-69
    • /
    • 2007
  • $C_{16}H_{16}O_3$의 중성분자, 음이온, 그리고 양이온에 대하여 양자역학적 방법을 사용하여, 분자구조, 진동주파수 그리고 HOMO-LUMO 차이와 재편성에너지(reorganization energy)를 통한 전하이동성 특성을 연구하였다. 분자구조는 $B3LYP/6-311G^{**}$ 수준까지 최적화 하여 안정한 구조를 찾았다. 또한 진동주파수를 계산하여 안정한 상태의 분자구조를 확인하였으며, 액정의 전하이동성 특성을 분석하기 위해서 HOMO-LUMO 에너지 차이와 재편성에너지를 계산하였다. $C_{16}H_{16}O_3$의 HOMO-LUMO 에너지 차이는 중성분자의 경우 4.45 eV, 음이온과 양이온에 대해서는 각각 1.46 eV, 1.53 eV로 계산되었고, 재편성에너지는 음이온의 경우 0.59 eV, 그리고 양이온의 경우 0.43 eV로 계산되었다.

Unidirectional Photo-induced Charge Separation and Thermal Charge Recombination of Cofacially Aligned Donor-Acceptor System Probed by Ultrafast Visible-Pump/Mid-IR-Probe Spectroscopy

  • Kim, Hyeong-Mook;Park, Jaeheung;Noh, Hee Chang;Lim, Manho;Chung, Young Keun;Kang, Youn K.
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.587-596
    • /
    • 2014
  • A new ${\pi}$-stacked donor-acceptor (D-A) system, [Ru(1-([2,2'-bipyridine]-6-yl-methyl)-3-(2-cyclohexa-2',5'-diene-1,4-dionyl)-1H-imidazole)(2,2':6',2"-terpyridine)]$[PF_6]_2$ (ImQ_T), has been synthesized and characterized. Similar to its precedent, [Ru(6-(2-cyclohexa-2',5'-diene-1,4-dione)-2,2':6',2"-terpyridine)(2,2':6',2"-terpyridine)]$[PF_6]_2$ (TQ_T), this system has a cofacial alignment of terpyridine (tpy) ligand and quinonyl (Q) group, which facilitates an electron transfer through ${\pi}$-stacked manifold. Despite the presence of lowest-energy charge transfer transition from the Ru-based-HOMO-to-Q-based-LUMO (MQCT) predicted by theoretical calculations by using time-dependent density functional theory (TD-DFT), the experimental steady-state absorption spectrum does not exhibit such a band. The selective excitation to the Ru-based occupied orbitals-to-tpy-based virtual orbital MLCT state was thus possible, from which charge separation (CS) reaction occurred. The photo-induced CS and thermal charge recombination (CR) reactions were probed by using ultrafast visible-pump/mid-IR-probe (TrIR) spectroscopic method. Analysis of decay kinetics of Q and $Q^-$ state CO stretching modes as well as aromatic C=C stretching mode of tpy ligand gave time constants of <1 ps for CS, 1-3 ps for CR, and 10-20 ps for vibrational cooling processes. The electron transfer pathway was revealed to be Ru-tpy-Q rather than Ru-bpy-imidazol-Q.

Ab Initio and Experimental Studies on Dibenzothiazyl-Disulfide

  • Jian, Fang-Fang;Zhang, Ke-Jie;Zhao, Pu-Su;Zheng, Jian
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권7호
    • /
    • pp.1048-1052
    • /
    • 2006
  • Ab initio calculations of the structure, atomic charges and natural bond orbital (NBO) have been performed at HF/6-311G** and B3LYP/6-311G** levels for the title compound of dibenzothiazyl-disulfide. The calculated results show that the two nitrogen atoms have the biggest negative charges and they are the potential sites to react with the metallic ions, which make the title compound become a di-dentate ligand. Vibrational frequencies of the title compound have been obtained and compared with the experimental value and the comparison indicates that B3LYP/6-311G** level is better than HF/6-311G** level to predict the vibrational frequencies for the system studied here. For the title compound, electronic absorption spectra calculated by time?ependent density functional theory (TD-DFT) are more accurate than Hartree-Focksingle-excitation CI (CI-Singles) method. NBO analyses show that the electronic transitions are mainly derived from the contribution of bands $\pi\rightarrow\pi^{*}$. Thermodynamic calculated results show that the formation of the title compound from 2-mercaptobenzothiazole is a spontaneous process at room temperature with the change of free Gibbs being negative value.

Self-Assembled Chiral Structures of Discoid Organic Molecule on Au(111)

  • Kim, Ji-Hoon;Khang, Se-Jong;Kwon, Young-Kyun;Park, Yongsup
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.280-280
    • /
    • 2013
  • Using both experimentaland theoretical methods, we have investigated the structural and electronic properties of self-assembled two-dimensional organic molecule (hexaaza-triphenylene-hexacarbonitrile, HATCN), which is used as an efficient OLED hole injection material, on Au(111) surfaces. Low-temperature scanning tunneling microscope (STM) measurements revealed that self-assembled linear and hexagonal porous structures are formed at atomic steps and terraces of Au(111), respectively. We also found that the hexagonal porous structure have chirality and forms only small (<1,000 nm2) phase-separated chiral domains that can easily change their chiral phase in subsequence STM images at 80 K. To explain these observations, we calculated the molecular-molecular and molecule-surface interaction energies by using first-principles density functional theory method. We found that the change of their chiral phase resulted from the competition between the two energies. These results have not only verified our experimental observations, but also revealed the delicate balance between different interactions that caused the self-assembed structures at the surface.

  • PDF

Theoretical Study of the Reaction Mechanism for SiF2 Radical with HNCO

  • Hou, Li-Jie;Wu, Bo-Wan;Kong, Chao;Han, Yan-Xia;Chen, Dong-Ping;Gao, Li-Guo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3738-3742
    • /
    • 2013
  • The reaction mechanism of $SiF_2$ radical with HNCO has been investigated by the B3LYP method of density functional theory(DFT), while the geometries and harmonic vibration frequencies of reactants, intermediates, transition states and products have been calculated at the B3LYP/$6-311++G^{**}$ level. To obtain more precise energy result, stationary point energies were calculated at the CCSD(T)/$6-311++G^{**}$//B3LYP/$6-311++G^{**}$ level. $SiF_2+HNCO{\rightarrow}IM3{\rightarrow}TS5{\rightarrow}IM4{\rightarrow}TS6{\rightarrow}OSiF_2CNH(P3)$ was the main channel with low potential energy, $OSiF_2CNH$ was the main product. The analyses for the combining interaction between $SiF_2$ radical and HNCO with the atom-in-molecules theory (AIM) have been performed.

Theoretical and Experimental Studies on the Adsorption of N-[(E)-Pyridin-2-ylmethylidene] Aniline, a Schiff Base, on Mild Steel Surface in Acid Media

  • N, Mohanapriya.;M, Kumaravel.;B, Lalithamani.
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권2호
    • /
    • pp.117-131
    • /
    • 2020
  • The adsorption of N-[(E)-Pyridin-2-ylmethylidene] aniline, a Schiff base, on to mild steel surface in 1M HCl and 0.5 M H2SO4 solutions and the consequent corrosion protection were studied employing weight loss method, electrochemical impedance spectroscopy and potentiodynamic polarization measurements. DFT calculations were performed to investigate its interaction with the metal surface at the atomic level to understand its inhibition mechanism. The adsorption process is well described by the Langmuir isotherm. The thermodynamic parameters indicated that the adsorption is spontaneous and the interaction of the inhibitor at the mild steel surface is mainly through physisorption. The Ra values obtained in AFM studies for the uninhibited and inhibited sample in HCl media respectively are 0.756 and 0.559 ㎛, and that in H2SO4 media are 0.411 and 0.406 ㎛. The lesser roughness values of the inhibited sample shows the adsorption of the molecules onto the mild surface. The inhibition efficiencies were found to improve with concentration of the inhibitor and the maximum efficiency was observed at 400ppm in all the investigation methods adopted. The inhibitor was found to exhibit a higher efficiency in HCl media (95.7%) than in H2SO4 (92.8%). The theoretical and experimental results are found to be in good agreement.

CCl4 Activation Mechanisms by Gas-Phase CHBr and CBr2: A Comparative Study

  • Liang, Junxi;Wang, Yanbin;Hasi, Qimeige;Geng, Zhiyuan
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.426-432
    • /
    • 2013
  • The mechanisms concerning C-Cl activation of $CCl_4$ by $CHBr^{{\cdot}-}$ and $CBr{_2}^{{\cdot}-}$ have been comparatively investigated in theory. Optimized geometries and frequencies of all stationary points on PES are obtained at the BhandHLYP/aug-cc-pVTZ level of theory, and then the energy profiles are refined at the QCISD(T) method with the aug-cc-pVTZ basis by using the BhandHLYP/aug-cc-pVTZ optimized geometries. Our calculated findings suggest that in the title reactions the major mechanisms consist of both Cl-abstraction and $S_N2$ substitution reactions. Also, a succeeding pathway described by electron transfer was revealed before the initial Cl-abstraction products separate. Those are consistent with relevant experimental results.

Relative Reactivity of Various Al-substituted-dialkylalans in Reduction of Carbonyl Compounds: A Theoretical Study on Substituent Effect

  • Nahm, Keepyung;Cha, Jin Soon
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권8호
    • /
    • pp.2335-2339
    • /
    • 2013
  • Relative reactivity of various Al-substituted dialkylalans ($AlR_2(X)$) in reduction of acetone has been studied with density functional theory and MP2 method. Formation of the alan dimers and the alan-acetone adduct, and the transition state for the Meerwein-Ponndorf-Verley (MPV) type reduction of the adduct were calculated to figure out the energy profile. Formation of dimeric alans is highly exothermic. Both the relative free energies for acetone-alan adduct formation and the TS barriers for the MPV type reduction with respect to alan dimers and acetone were calculated and they show the same trend. Based on these energetic data, relative reactivity of alans is expected to be; $AlR_2(Cl)$ > $AlR_2(OTf)$ > $AlR_2(O_2CCF_3)$ > $AlR_2(F)$ > $AlR_2(OMs)$ > $AlR_2(OAc)$ > $AlR_2(OMe)$ > $AlR_2(NMe_2)$. The energy profile is relatively well correlated with the experimental order of the reactivity of Al-substituted dialkylalans. It is noted that the substituents of alans have initial effects on the relative free energies for the carbonyl-adduct formation. Therefore, an $AlR_2(X)$ which forms a more stable carbonyl-adduct is more reactive in carbonyl reduction.

Study of Self-assembled Organic Layer Formation at the HATCN/Au Interface

  • Kim, Ji-Hoon;Won, Sangyeon;Kwon, Young-Kyun;Kahng, Se-Jong;Park, Yongsup
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.150.2-150.2
    • /
    • 2013
  • We elucidate the mechanism of the self-assembled organic layer formation at the organic/metal interface of hexaaza-triphenylene-hexacarbonitrile (HATCN)/Au(111) by first-principles calculations and Lowtemperature scanning tunneling microscope (STM). In this work, we used HATCN to deposit organic material which is well known as an efficient OLED charge generation material. Low-temperature STM measurements revealed that self-assembled hexagonal porous structure is formed at terraces of Au(111). We also found that the hexagonal porous structure has chirality and forms only small (<1000 $nm^2$) phaseseparated chiral domains that can easily change their chiral phase in subsequence STM images at 80 K. To explain the mechanism of these observation, we calculated the molecular-molecular and molecule-surface interaction energies by using density functional theory method. We found that the change of their chiral phase resulted from the competition between the two energies. These results have not only verified our experimental observations, but also revealed the delicate balance between different interactions that caused the self-assembed structures at the surface.

  • PDF