Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.12.3738

Theoretical Study of the Reaction Mechanism for SiF2 Radical with HNCO  

Hou, Li-Jie (School of Chemistry & Chemical Engineering, Longdong University)
Wu, Bo-Wan (School of Chemistry & Chemical Engineering, Longdong University)
Kong, Chao (School of Chemistry & Chemical Engineering, Longdong University)
Han, Yan-Xia (School of Chemistry & Chemical Engineering, Longdong University)
Chen, Dong-Ping (School of Chemistry & Chemical Engineering, Longdong University)
Gao, Li-Guo (School of Chemistry & Chemical Engineering, Yulin University)
Publication Information
Abstract
The reaction mechanism of $SiF_2$ radical with HNCO has been investigated by the B3LYP method of density functional theory(DFT), while the geometries and harmonic vibration frequencies of reactants, intermediates, transition states and products have been calculated at the B3LYP/$6-311++G^{**}$ level. To obtain more precise energy result, stationary point energies were calculated at the CCSD(T)/$6-311++G^{**}$//B3LYP/$6-311++G^{**}$ level. $SiF_2+HNCO{\rightarrow}IM3{\rightarrow}TS5{\rightarrow}IM4{\rightarrow}TS6{\rightarrow}OSiF_2CNH(P3)$ was the main channel with low potential energy, $OSiF_2CNH$ was the main product. The analyses for the combining interaction between $SiF_2$ radical and HNCO with the atom-in-molecules theory (AIM) have been performed.
Keywords
$SiF_2$ radical; Isocyanic acid; Reaction mechanism; AIM;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zyrianov, M.; Droz-Georget, T. J. Chem. Phys. 1996, 105(18), 8111-8116.   DOI   ScienceOn
2 Steven, J. E.; Qiang, C.; Morokuma, K. J. Chem. Phys. 1998, 108(4), 1452-1474.   DOI   ScienceOn
3 Fang, W. H.; You, X. Z.; Zhen, Y. Chem. Phys. Lett. 1995, 238, 236-242.   DOI   ScienceOn
4 Brown, S. S.; Cheatum, C. M.; Fitzwater, D. A. et al. J. Chem. Phys. 1996, 105(24), 10911-10918.   DOI   ScienceOn
5 Klossica, J. J.; Lothmann, H. F.; Yamashita, K. Chem. Phys. Lett. 1997, 276, 325-330.   DOI   ScienceOn
6 Perry, R. A.; Siebers, D. L. Nature 1986, 324(6098), 657-658.   DOI   ScienceOn
7 Miller, J. A.; Bowman, C. T. Int. J. Chem. Kinet. 1991, 23(4), 289-313.   DOI
8 Zyrianov, M.; Droz-Georget, Th.; Reisler, H. J. Chem. Phys. 1999, 110(4), 2059-2068.   DOI   ScienceOn
9 Reinhard, S.; Martina, B. Chem. Phys. Lett. 2000, 332, 611-615.   DOI   ScienceOn
10 Mertens, J. D.; Kohse-Honghans, K. et al. Int. J. Chem. Kinet. 1991, 23, 655-658.   DOI
11 Raunier, S.; Chiavassa, T.; Marinelli, F. et al. Chem. Phys. Lett. 2003, 368, 594-600.   DOI   ScienceOn
12 Xu, Z. F.; Sun, C. C. J. Phys. Chem. A 1998, 102(7), 1194-1199.   DOI   ScienceOn
13 Xu, Z. F.; Sun, C. C. J. Mol. Struct. (Theochem) 1999, 459, 37-46.   DOI   ScienceOn
14 Raunier, S.; Chiavassa, T.; Allouche, A. et al. Chem. Phys. 2003, 288(2), 197-210.   DOI   ScienceOn
15 Geith, J.; Klapotke, T. M. J. Mol. Struct. (Theochem) 2001, 538(1), 29-39.   DOI   ScienceOn
16 Xu, Z. F.; Sun, C. C. J. Mol. Struct. (Theochem) 1999, 459, 37-46.   DOI   ScienceOn
17 Ji, Y. Q.; Feng, W. L.; Xu, Z. F. Science in China Series BChemistry 2002, 32(2), 172-178.
18 Karl-Martin, H.; Jessica, S.; Claes, T. et al. A. Combust. Flame 2004, 137(3), 265-277.   DOI   ScienceOn
19 Ma, S. Y.; Ji, Y. G.; Liu, R. Z. Acta Chim. Sin. 1997, 55, 110-116.
20 Zhao, L.; Li, Z. H. Science in China Series B-Chemistry 2001, 31(2), 123-129.
21 Zhang, X. Z.; Zhen, Z.; Liu, X. H. Science in China Series BChemistry 2004, 34(4), 339-345.
22 Kong, C.; Han, Y. X.; Chen, D. P. J. At. Mol. Phys. 2011, 28(5), 823-829.
23 Hou, L. J.; Kong, C.; Han, Y. X.; Chen, D. P. et al. J. At. Mol. Phys. 2012, 29(6), 753-764.
24 Li, L. C.; Liu, J. L.; Shang, J. Chin. J. Chem. Physics 2006, 19(5), 451-456.   DOI   ScienceOn
25 Liu, J. L.; Shang, J.; Wang, P. Y. et al. Acta Phys. Chim. Sin. 2006, 22(8), 921-925.
26 Zha, D.; Li, L. C.; Zhu, Y. Q. et al. Acta Chim. Sin. 2005, 63(19), 1782-1788.
27 Shang, J.; Zha, D.; Li, L. C. et al. Acta Chim. Sin. 2006, 64(9), 923-929.
28 Li, L. C.; Z, Y.; Zha, D. Int. J. Quantum Chem. 2006, 106(7), 1672-1682.   DOI   ScienceOn
29 David, S. Y.; Umstead, M. E.; Lin, M. C. ACS Symp. Ser. 1978, 66, 128-151.
30 Liu, P. J.; Pan, X. M.; Zhao, M. Acta Chim. Sin. 2002, 60(11), 1941-1945.
31 Li, Z. F.; Zhu, Y. C.; Li, H. X. et al. J. At. Mol. Phys. 2009, 26(5), 821-701.
32 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B.01, Gaussian, Inc., Pittsburgh PA, 2003.
33 Su, M. D.; Chu, S. Y. J. Am. Chem. Soc. 1999, 121, 4229-4237.   DOI   ScienceOn
34 Becke, A. D.; Kohn, W.; Parr, R. G. J. Phys. Chem. 1996, 100, 12974-12980.   DOI   ScienceOn
35 Fukui, K. J. Phys. Chem. 1970, 74, 4161-4163.   DOI
36 Becke, A. D. Phys. Rev. A 1988, 38(6), 3098-3100.   DOI   ScienceOn