• 제목/요약/키워드: Densification Process

검색결과 299건 처리시간 0.029초

Densification of 4D Carbon Fiber Performs with Mesophase Pitch as Matrix-Precursor

  • Joo, Hyeok-Jong;Lee, Jae-Won
    • Carbon letters
    • /
    • 제6권3호
    • /
    • pp.173-180
    • /
    • 2005
  • In this study, AR (aromatic resin) pitch was employed as the matrix-precursor for carbon/carbon composite because it exhibits much higher coke yield than coal tar pitch. As a result, a fabrication process of carbon/carbon composites can be shortened. It has been known that the pitches may cause swolling problem during the carbonization process. In order to restrain the swelling occurrence, a small quantity of carbon black was added to the AR pitch. Due to addition of carbon black the swelling was decreased largely and the perform can be infiltrated with the AR pitch. The densification efficiency of the performs was compared with various matrix-precursors. The coke yield of matrixprecursors, the morphology and the degree of graphitization of carbon matrix were analyzed.

  • PDF

등통로각압축이 결합된 압출 공정에 의한 알루미늄 분말의 치밀화 거동 (Analysis of Aluminum Powder Densification by Continuous Front Extrusion-Equal Channel Angular Pressing)

  • 윤승채;김형섭
    • 한국분말재료학회지
    • /
    • 제15권3호
    • /
    • pp.204-209
    • /
    • 2008
  • Aluminum alloys are not only lightweight materials, but also have excellent thermal conductivity, electrical conductivity and workability, hence, they are widely used in industry. It is important to control and enhance the densification behavior of metal powders of aluminum. Investigation on the extrusion processing combined with equal channel angular pressing for densification of aluminum powders was performed in order to develop a continuous production process. The continuous processing achieved high effective strain and full relative density at $200^{\circ}C$. Optimum processing conditions were suggested for good mechanical properties. The results of this simulation helped to understand the distribution of relative density and effective strain.

비정질/다이아몬드 복합재료에서 상분율과 비정질-다이아몬드 입자 크기 비가 성형특성에 미치는 영향 (Effects of Phase Fraction and Metallic Glass-Diamond Size Ratio on the Densification of Metallic Glass/Diamond Composite)

  • 신수민;김택수;강승구;김정곤
    • 한국분말재료학회지
    • /
    • 제16권3호
    • /
    • pp.173-179
    • /
    • 2009
  • In the present study, Zr-base metallic glass(MG)/diamond composites are fabricated using a combination of gas-atomization and spark plasma sintering (SPS). The densification behaviors of mixtures of soft MG and hard diamond powders during consolidation process are investigated. The influence of mixture characteristics on the densification is discussed and several mechanism explaining the influence of diamond particles on consolidation behaviour are proposed. The experimental results show that consolidation is enhanced with increasing diamond/Metallic Glass(MG) size ratio, while the diamond fraction is fixed.

Co-sintering of M2/316L Layers for Fabrication of Graded Composite Structures

  • Firouzdor, V.;Simchi, A.;Kokabi, A.H.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.696-697
    • /
    • 2006
  • This paper presents the densification and microstructure evolution of bilayer components made from 316L stainless steel and M2 High speed steel during co-sintering process. The sintering was carried out at temperatures ranging from $1230-1320^{\circ}C$ in a reducing atmosphere. The addition of boron to 316L was examined in order to increase the densification rate and improve the sintering compatibility between the two layers. It was shown that the mismatch strain bettwen the two layers induces biaxial stresses during sintering, influencing the densification rate. The effect of boron addition was also found to be positive as it improves the bonding between the two layers.

  • PDF

Modified Densification Process for Increasing Strength Properties of Pine and Gmelina Wood from Community Forests

  • Yunianti, Andi Detti;Tirtayasa P., Kidung;Suhasman, Suhasman;Taskirawati, Ira;Agussalim, Agussalim;Muin, Musrizal
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권4호
    • /
    • pp.418-424
    • /
    • 2019
  • Densification is a process for improving the strength properties of wood from the felling of young trees, which is a common harvest practice in community forests. A series of experiments was conducted to refine the process with particular regard to the determination of suitable pretreatment and treatment conditions. Samples of pine and gmelina measuring $23cm(L){\times}20cm(W){\times}2cm(T)$ underwent pretreatment through immersion in a 1:1 $CH_3COOH-H_2O_2$ solution at concentrations of 15%, 20%, and 30%. Samples pretreated with the 20% solution showed the greatest improvement in strength; further experiments were conducted to determine the optimum treatment conditions in terms of temperature and duration following immersion. Test samples with the same dimensions as those in the pretreatment experiment were soaked in a 1:1 20% $CH_3COOH-H_2O_2$ solution and warmed in a water bath. The test samples were then individually hot pressed to the target thickness, which was 30% less than the original thickness and held at $150^{\circ}C$ or $170^{\circ}C$ for 15 or 30 minutes. The treated samples were cut for an analysis of their density, recovery of set, and bending strength. Pine and gmelina exhibited the best characteristics after treatment at $150^{\circ}C$ for 30 and 15 minutes, respectively. The results suggest that the modified densification process had increased the bending strength of the wood, but the temperature and duration of treatment must be carefully considered for different wood species.

상온 반복압축 후 가압소결에 의한 알루미나 분말의 소결특성 -치밀화와 결정립 성장 및 파괴인성- (Sintering Characterization of Alumina Powders by Hot Pressing after Cold Cyclic Compaction -Densification, Grain-Growth and Fracture Toughness-)

  • 손건석;서정;백성기;김기태
    • 한국세라믹학회지
    • /
    • 제30권1호
    • /
    • pp.62-68
    • /
    • 1993
  • Densification of alumina powder, grain size and fracture toughness of sintered body by hot pressing after cold compaction were investigated and compared to traditional hot pressing process (without cold cyclic compaction). To achieve a higher densification and to reduce the hot pressing time, hot pressing after cold cyclic compaction was more efficient compared to traditional hot pressing. This phenomenon resulted from the increment of packing densityby the acceleration fo rearrangement of powders under cold cyclic compaction. The grain size of sintered body was only dependent on relative density, and densification during hot pressing was governed by thelattice diffusion. Comprisons of grain size, densification mechanism and fracture toughness resulted from hot pressing after/without cold cyclic compaction showed that a low cyclic pressure may not effect on the fragmentation of alumina powders.

  • PDF

유한요소해석을 이용한 고압비틀림 공정 중의 구리 분말의 치밀화 및 고형화 거동 분석 (Analyses of Densification and Consolidation of Copper Powders during High-Pressure Torsion Process Using Finite Element Method)

  • 이동준;윤은유
    • 한국분말재료학회지
    • /
    • 제22권1호
    • /
    • pp.6-9
    • /
    • 2015
  • In this study, the behavior of densification of copper powders during high-pressure torsion (HPT) at room temperature is investigated using the finite element method. The simulation results show that the center of the workpiece is the first to reach the true density of copper during the compressive stage because the pressure is higher at the center than the periphery. Subsequently, whole workpiece reaches true density after compression due to the high pressure. In addition, the effective strain is increased along the radius during torsional stage. After one rotation, the periphery shows that the effective strain is increased up to 25, which is extensive deformation. These high pressure and severe strain do not only play a key role in consolidation of copper powders but also make the matrix harder by grain refinement.

PMD(Pre-Metal Dielectric) 선형 질화막 공정의 최적화 (Optimization of PMD(Pre-Metal Dielectric) Linear Nitride Process)

  • 정소영;서용진;김상용;이우선;이철인;장의구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 반도체재료
    • /
    • pp.38-41
    • /
    • 2001
  • In this work, we have been studied the characteristics of each nitride film for the optimization of PMD(pre-metal dielectric) liner nitride process, which can applicable in the recent semiconductor manufacturing process. The deposition conditions of nitride film were splited by PO (protect overcoat) nitride, baseline, low hydrogen, high stress and low hydrogen, respectively. And also we tried to catch hold of correlation between BPSG(boro-phospho silicate glass) deposition and densification. Especially, we used FTIR area method for the analysis of density change of Si-H bonding and Si-NH-Si bonding, which decides the characteristics of nitride film. To judge whether the deposited films were safe or not, we investigated the crack generation of wafer edge after BPSG densification, and the changes of nitride film stress as a function of RF power variation.

  • PDF

분말 ECAP 공정에 미치는 금형 모서리각 효과에 대한 유한요소해석 (Finite Element Analysis on the Effect of Die Corner Angle in Equal Channel Angular Pressing Process of Powders)

  • 윤승채;복천희;팜쾅;김형섭
    • 한국분말재료학회지
    • /
    • 제14권1호
    • /
    • pp.26-31
    • /
    • 2007
  • Manufacturing bulk nanostructured materials with least grain growth from initial powders is challenging because of the bottle neck of bottom-up methods using the conventional powder metallurgy of compaction and sintering. In this study, bottom-up type powder metallurgy processing and top-down type SPD (Severe Plastic Deformation) approaches were combined in order to achieve both real density and grain refinement of metallic powders. ECAP (Equal Channel Angular Pressing), one of the most promising processes in SPD, was used for the powder consolidation method. For understanding the ECAP process, investigating the powder density as well as internal stress, strain distribution is crucial. We investigated the consolidation and plastic deformation of the metallic powders during ECAP using the finite element simulations. Almost independent behavior of powder densification in the entry channel and shear deformation in the main deformation zone was found by the finite element method. Effects of processing parameters on densification and density distributions were investigated.

Numerical study on heat transfer and densification for SiC composites during thermal gradient chemical vapour infiltration process

  • Ramadan, Zaher;Im, Ik-Tae
    • Carbon letters
    • /
    • 제25권
    • /
    • pp.25-32
    • /
    • 2018
  • In this study, a thermal-gradient chemical vapor infiltration (TG-CVI) process was numerically studied in order to enhance the deposition uniformity within the preform. The computational fluid dynamics technique was used to solve the governing equations for heat transfer and gas flow during the TG-CVI process for two- and three-dimensional (2-D and 3-D) models. The temperature profiles in the 2-D and 3-D models showed good agreement with each other and with the experimental results. The densification process was investigated in a 2-D axisymmetric model. Computation results showed the distribution of the SiC deposition rate within the preform. The results also showed that using two-zone heater gave better deposition uniformity.