• 제목/요약/키워드: Dense materials

검색결과 825건 처리시간 0.03초

Ultrastructural Study on Induced Resistance of Cucumber Plants against Sphaerotheca fuliginea by Oligochitosan

  • Ma, Qing;Zhao, Xiao-Ming;Sun, Hui;Shang, Hong-Sheng
    • The Plant Pathology Journal
    • /
    • 제27권1호
    • /
    • pp.8-13
    • /
    • 2011
  • The induced resistance of cucumber leaves treated with oligochitosan to the infection of the cucumber powdery mildew, Sphaerotheca fuliginea, was investigated using transmission electron microscopy. The results showed that when the plants were treated with oligochitosan and challenged with inoculum, a significant decrease of the disease occurred. The mycelial development in the treated leaves was markedly inhibited. The cytoplasm of the powdery mildew mycelium was aggregated, with its organelles disintegrated and the cytoplasm collapsed. The protoplasm in haustoria became electron-dense. Haustoria became malformed, their organelles disintegrated, the hausterial wall thickened and eventually the whole complex necrotized. The host cells produced defence structures and materials associated with infection and a hypersensitive response. The host cell wall was thickened and deeply stained; several layers of papilla structure were produced under the cell wall; dark materials were deposited between the cell wall and plasmalemma; extrahaustorial plasmalemma was deeply stained and extrahaustorial matrix appositions had large deposits of electron-dense material; the cytoplasm was disordered, host organelles disintegrated and eventually the whole host cell disintegrated and necrotized.

한국산 고슴도치 유문부에 있어서 내분비세포의 전자현미경적 연구 (An Ultrastructural Study on Endocrine Cells in the Pyloric Region of the Korean Hedgehog(Erinaceus koreanus))

  • 이재현
    • Applied Microscopy
    • /
    • 제17권1호
    • /
    • pp.177-184
    • /
    • 1987
  • 한국산 고슴도치 유문부에 있어서 내분비세포를 전자현미경적으로 관찰하여 EC, ECL, D1 및 G형 등의 4종류의 세포를 분류하였다. EC세포는 고전자밀도의 다형태성 과립을 가지며, 과립내에는 더 높은 전자밀도의 dense body가 보였다. 과립의 크기는 $160{\sim}530nm$였다. ECL세포는 원형 또는 난원형의 과립을 가지며, 이들 과립내용물의 전자밀도는 높고, 편재하거나 공포상으로 출현하였다. 과립의 크기는 $200{\sim}560nm$였다. D1세포는 원형의 과립을 가지며, 과립의 전자밀도는 낮고, 때로 한계막과 과립내용물 사이에 좁은 halo를 나타내었다. 과립의 크기는 $130{\sim}400nm$였다. G세포는 원형 또는 난원형의 과립을 가지며, 비교적 낮은 전자밀도의 과립내용물과 한계막 사이에 좁은 halo를 보였다. 과립의 크기는 $140{\sim}370nm$였다.

  • PDF

Small- and large-scale analysis of bearing capacity and load-settlement behavior of rock-soil slopes reinforced with geogrid-box method

  • Moradi, Gholam;Abdolmaleki, Arvin;Soltani, Parham
    • Geomechanics and Engineering
    • /
    • 제18권3호
    • /
    • pp.315-328
    • /
    • 2019
  • This paper presents an investigation on bearing capacity, load-settlement behavior and safety factor of rock-soil slopes reinforced using geogrid-box method (GBM). To this end, small-scale laboratory studies were carried out to study the load-settlement response of a circular footing resting on unreinforced and reinforced rock-soil slopes. Several parameters including unit weight of rock-soil materials (loose- and dense-packing modes), slope height, location of footing relative to the slope crest, and geogrid tensile strength were studied. A series of finite element analysis were conducted using ABAQUS software to predict the bearing capacity behavior of slopes. Limit equilibrium and finite element analysis were also performed using commercially available software SLIDE and ABAQUS, respectively to calculate the safety factor. It was found that stabilization of rock-soil slopes using GBM significantly improves the bearing capacity and settlement behavior of slopes. It was established that, the displacement contours in the dense-packing mode distribute in a broader and deeper area as compared with the loose-packing mode, which results in higher ultimate bearing load. Moreover, it was found that in the loose-packing mode an increase in the vertical pressure load is accompanied with an increase in the soil settlement, while in the dense-packing mode the load-settlement curves show a pronounced peak. Comparison of bearing capacity ratios for the dense- and loose-packing modes demonstrated that the maximum benefit of GBM is achieved for rock-soil slopes in loose-packing mode. It was also found that by increasing the slope height, both the initial stiffness and the bearing load decreases. The results indicated a significant increase in the ultimate bearing load as the distance of the footing to the slope crest increases. For all the cases, a good agreement between the laboratory and numerical results was observed.

해포석과 숯을 이용한 보수성포장의 노면온도 특성 평가 (Evaluation of Surface Temperature Characteristics of Water Retaining Pavement using Sepiolite and Charcoal)

  • 이수형;이학주;김제원;유인균
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.357-360
    • /
    • 2007
  • Water retaining pavement is a pavement to lower the surface temperature by using evaporation of the water that the pavement contains when the pavement is heated by the sun in the daytime. The objective of this study is to develop water retaining materials. In this study we evaluated the practical application of a sepiolite and a charcoal as a water retaining material. We produced dense grade asphalt pavement, porous asphalt pavement, semi-rigid Pavement, semi-rigid pavement included a charcoal and semi-rigid pavement included a sepiolite, and then tested surface temperature characteristics. The test result says that water retaining pavements using a sepiolite and a charcoal lower surface temperature more than $10^{\circ}C$ compared to dense grade asphalt pavement. We confirm the practical application of a sepiolite and a charcoal as a water retaining material according to the test results.

  • PDF

Effect of Electric Field Frequency on the AC Electrical Treeing Phenomena in an Epoxy/Layered Silicate Nanocomposite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권5호
    • /
    • pp.278-281
    • /
    • 2013
  • The effects of electric field frequency on the AC electrical treeing phenomena in an epoxy/layered silicate (1.5 wt%) were investigated in a needle-plate electrode arrangement. A layered silicate was exfoliated in an epoxy-base resin with AC electric field apparatus. To measure the treeing initiation and propagation- and the breakdown rate, a constant alternating current (AC) of 10 kV with three different electric field frequencies (60, 500, and 1,000 Hz) was applied to the specimen in the needle-plate electrode specimen in an insulating oil bath at $130^{\circ}C$. At 60 Hz, the treeing initiation time was 12 min, the propagation rate was $0.24{\times}10^{-3}$ mm/min, and the morphology was a dense branch type. As the electric field frequency increased, the treeing initiation time decreased and the propagation rate increased. At 1,000 Hz, the treeing initiation time was 5 min, the propagation rate was $0.30{\times}10^{-3}$ mm/min, and the morphology was a dense bush type.

초경합금기판 위에 성장되는 다이아몬드 막의 특성 (Characteristics of Diamond Films Deposited on Cemented Tungsten Carbide Substrate)

  • 김봉준;박상현;박재윤
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권7호
    • /
    • pp.387-394
    • /
    • 2004
  • Diamond films were deposited on the cemented tungsten carbide WC-Co cutting insert substrates by using both microwave plasma chemical vapor deposition(MWPCVD) and radio frequency plasma chemical vapor deposition (RFPCVD) from $CH_4$$-H_2$$-O_2$ gas mixture. Scanning electron microscopy and X-ray diffraction techniques were used to investigate the microstructure and phase analysis of the materials and Raman spectrometry was used to characterize the quality of the diamond coating. Diamond films deposited using MWPCVD from $CH_4$$-H_2$$-O_2$ gas mixture show a dense, uniform, well faceted and polycrystalline morphology. The compressive stress in the diamond film was estimated to be (1.0∼3.6)$\pm$0.9 GPa. Diamond films which were deposited on the WC-Co cutting insert substrates by RFPCVD from $CH_4$$-H_2$$-O_2$ gas mixture show relatively good adhesion, very uniform, dense and polycrystalline morphology.

Permeation behavior of olefin/nitrogen/hydrogen through PDMS dense and composite membranes

  • Choi, Seung-Hak;Kim, Jeong-Hoon;Shin, Hyo-Jin;Park, In-Jun;Roh, Jae-Sung;Kang, Deuk-Joo;Lee, Soo-Bok
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2003년도 The 4th Korea-Italy Workshop
    • /
    • pp.137-138
    • /
    • 2003
  • The worldwide annual production of polyolefins amounted to 60 million tons in 2000. During the process, 1-2 wt% of the olefin monomers have been emitted and flared into the air, causing the huge energy consumption and severe carbon dioxide emission. Recently, membrane process has been proved to be the most competitive among other separation processes in terms of cost of equipments, energy consumption and safety in this application. The performance of membrane process highly depends on the membrane properties and thus, it is very important to develop good membrane materials and composite membranes. We prepared PMDS dense and composite membranes and studied basic permeation behaviors of a series of olefins(ethylene, propylene, 1 -butylene), nitrogen and hydrogen as model gases.

  • PDF

In-vitro and In-vivo Biocompatibility Evaluation of Silica Based Bio-active Glass Prepared by Hydrothermal Method

  • Sarkar, Swapan Kumar;Nguyen, Phuong Thi;Lee, Byong-Taek
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.53.1-53.1
    • /
    • 2011
  • Bioactive glass powders were synthesized by hydrothermal chemical route by the use of ultrasonic energy irradiation. We used sodalime, calcium nitrate tetra hydrate and di ammonium hydrogen phosphate as the precursor material to synthesize $SiO_2$ rich bio-active glass materials. The $SiO_2$ content was varied in the precursor mixture to 60, 52 and 45 mole%. Dense compacts were obtained by microwave sintering at $1,100^{\circ}C$. Mechanical properties were characterized for the fabricated dense bioactive glasses and were found to be comparable with conventional CaO-$SiO_2$-$Na_2O$-$P_2O_5$ bioactive glass. Detailed biocompatibility evaluation of the glass composition was investigated by in-vitro culture of MG-63 cell and mesenchyme stem cell. Cell adhesion behavior was investigated for both of the cell by one cell morphology for 30, 60 and 90 minutes. Cell proliferation behavior was investigated by culturing both of the cells for 1, 3 and 7 days and was found to be excellent. Both SEM and confocal laser scanning microscopy were used for the investigation. Western blot analysis was performed to evaluate the bimolecular level interaction and extent and rate of specific protein expression. The ability to form biological apatite in physiological condition was observed with simulated body fluid (SBF). In-vivo bone formation behavior was investigated after implanting the materials inside rabbit femur for 1 and 3 month. The bone formation behavior was excellent in all the bioglass compositions, specially the composition with 60% $SiO_2$ content showed most promising trend.

  • PDF

EB-PVD법에 의해 제조된 YSZ 전해질의 전기적 특성 (Electrical Properties of YSZ Electrolyte Film Prepared by Electron Beam PVD)

  • 신태호;유지행;이시우;한인섭;우상국;현상훈
    • 한국세라믹학회지
    • /
    • 제42권2호
    • /
    • pp.117-122
    • /
    • 2005
  • 나노 코팅 기술로써 빠른 증착 속도와 미세구조 제어가 용이하여 항공기 엔진 부품 열차폐 코팅으로 널리 이용되는 Electron Beam Physical Vapor Deposition (EB-PVD)세라믹 코팅 기술을 연료전지 전해질 제조에 적용하였다. EB-PVD 법을 이용하여 NiO-YSZ 기판에 YSZ 전해질을 약 10$\mu$m의 두께로 짧은 시간에 코팅하였으며 증착온도에 따라 나노 구조의 표면을 가진 YSZ 막을 얻을 수 있었다. 연료전지 전해질로서의 특성을 평가하기 위하여, 같은 조건의 코팅으로 $Al_{2}O_3$기판에 전해질을 동일한 조건으로 코팅하여 전해질의 전기적 특성을 평가하였다. 또한 양극물질로서 $LaSrCoO_3$ 분말을 일반적인 스크린 프린팅 기법으로 코팅하여 EB-PVD의 코팅을 이용한 고체산화물 연료전지 제조 가능성에 대하여 논의하였다

알칼리 반응에 의한 알루미나-실리카-산화칼슘계 무기질 자기경화 코팅의 특성 (Properties of Self-hardened Inorganic Coating in the System Alumina-Silica-Calcium Oxide by the Reaction with Alkalies)

  • 전창섭;송태웅
    • 한국세라믹학회지
    • /
    • 제47권5호
    • /
    • pp.381-386
    • /
    • 2010
  • Some basic properties of inorganic coatings hardened by the room temperature reaction with alkalies were examined. The coating paste was prepared from the powders in the system $Al_2O_3-SiO_2$-CaO using blast furnace slag, fly ash and amorphous ceramic fiber after mixing with a solution of sodium hydroxide and water glass. The mineralogical and morphological examinations were performed for the coatings prepared at room temperature and after heating to $1200^{\circ}C$ respectively. The binding force of the coating hardened at room temperature was caused by the formation of fairly dense matrix mainly composed of oyelite-containing amorphous phase formed by the reaction between blast furnace slag and alkali solution. At the temperature, fly ash and ceramic fiber was not reacted but imbedded in the binding phase, giving the fluidity to the paste and reinforcing the coating respectively. During heating up to $1200^{\circ}C$, instead of a break in the coating, anorthite and gehlenite was crystallized out by the reaction among the binding phase and unreacted components in ternary system. The crystallization of these minerals revealed to be a reason that the coating maintains dense morphology after heating. The maintenance of binding force after heat treatment is seemed to be also caused by the formation of welldispersed fiber-like mineral phase which is originated from the shape of the amorphous ceramic fiber used as a raw materials.