• Title/Summary/Keyword: Dendranthema

Search Result 139, Processing Time 0.035 seconds

Occurrence of Chrysanthemum chlorotic mottle viroid in Chrysanthemum(Dendranthema grandiflorum) in Korea

  • Chung, Bong-Nam;Kim, Dong-Chan;Kim, Jeong-Soo;Cho, Jeom-Deog
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.334-338
    • /
    • 2006
  • Chrysanthemum chlorotic mottle viroid(CChMVd) isolates have been identified from chrysanthemum showing yellow spots or infected without symptom. They were 399-400 nucleotides length of RNA. CChMVd-SSHA6(GenBank accession no. DQ450682) revealed a GAAA to DUUC substitution in positions 82-85 of CChMVd-MSIN34(GenBank accession no. DQ402041). In vitro RNA transcripts with the complete CChMVd sequence were infectious and induced the typical CChMVd infection symptom of yellow spots in chrysanthemum cv. Sharotte. CChMVd caused reduction in growth in some cultivars, whereas some cultivars were not affected. This is the first report on the occurrence of CChMVd in chrysanthemum in Korea.

Occurrence of Chrysanthemum stunt viroid in Chrysanthemum in Korea

  • Chung, Bong-Nam;Lim, Jin-Hee;Choi, Seong-Youl;Kim, Jeong-Soo;Lee, Eun-Jung
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.377-382
    • /
    • 2005
  • Infection rate of Chrysanthemum stunt viroid (CSVd) in 64 commercial chrysanthemum cultivars cultivated in Korea ranged from 9.7 to 66.8$\%$. Symptoms on leaves of CSVd-infected chrysanthemum included yellow spots, chlorosis, vein clearing, vein bending and crumpling. CSVd induced flower malformation in 'Scot', color change in 'Sharotte', and color breaking in 'Sharon'. CSVd caused reduction of plant height, leaf size, flower size and the flowers number by $32-50\%,\;26-35\%$, $14-36\%\;and\;14-75\%$, respectively. In conclusion, CSVd affected plant height, leaf size and flower quality in chrysanthemum plants.

Zygotorulaspora cornina sp. nov. and Zygotorulaspora smilacis sp. nov., Two Novel Ascomycetous Yeast Species Isolated from Plant Flowers and Fruits

  • Ahn, Chorong;Kim, Minkyeong;Kim, Changmu
    • Mycobiology
    • /
    • v.49 no.5
    • /
    • pp.521-526
    • /
    • 2021
  • Three isolates belonging to the ascomycetous genus Zygotorulaspora were obtained from the fruits of Cornus officinalis and Smilax china, and flowers of Dendranthema zawadskii var. latilobum in Gongju-si, Korea. Phylogenetic Analyses of the LSU D1/D2 domain and ITS region sequences supported the recognition of two new species: Zygotorulaspora cornina sp. nov. (type strain NIBRFGC000500475 = KACC93346PPP) and Zygotorulaspora smilacis sp. nov. (type strain NIBRFGC000500476 = KACC93347PPP). The two novel species revealed no growth on D-Galactose, unlike the other six species in the genus Zygotorulaspora. They are distinguished from each other by their phylogenetic differences and phenotypic characteristics such as assimilation of xylitol, 5-keto-D-gluconate, and ethanol. All species in the genus Zygotorulaspora including the two novel species have phenotypic traits of genus Zygotorulaspora: asci are persistent, sucrose and raffinose are assimilated, and m-inositol is not required for growth, and they are mainly associated with plants.

Autotrophic Growth of Dendranthema grandiflorum R. 'Bongwhang' Plantlets In Vitro as Affected by PPF, Air Exchange Rate and $\textrm{CO}_2$ Concentration (봉황국화의 자가영양배양시 광도, 환기횟수 및 $\textrm{CO}_2$농도가 기내생육에 미치는 영향)

  • 김영회;정병룡
    • Journal of Bio-Environment Control
    • /
    • v.8 no.1
    • /
    • pp.56-66
    • /
    • 1999
  • Growth of Dendranthema grandiflorum R. ‘Bongwhang’plantlets, as affected by three levels of photosynthetic photon flux (PPF), 70, 150 and 220 $\mu$mol. $m^{-2}$ . $s^{-1}$ , three levels of C $O_{2}$ concentration, 400-500 (ambient), 1000 and 2000 $\mu$mol.mo $l^{-1}$ , and two levels of number of air exchanges per hour (NAEH), 0.1 $h^{-1}$ and 2.8 $h^{-l}$, was studied. Explants were obtained from photomixotrophically-micropropagated plantlets. Four explants were planted in each 3.7$\times$10$^{-4}$ $m^{3}$ polycarbonate box containing MS medium supplemented with 1.25 meq. $L^{-1}$ $H_{2}$P $O_{4}$$^{[-10]}$ and no added sugar. Explants were cultured under cool-white fluorescent lamps (16 h. $d^{-1}$ ), at 25$\pm$1$^{\circ}C$ temperature, and 70-80% relative humidity. In treatments of 2.8 $h^{-1}$ NAEH, a 10 mm round hole made on the vessel cap was sealed with a microporous filter For higher C $O_{2}$ concentrations in the culture room, C $O_{2}$ gas was provided from a tank of liquefied C $O_{2}$. Fresh and dry weights, height, length of the longest roots, number of leaves, and leaf area significantly increased with increasing PPF and especially, with increasing C $O_{2}$ concentration. Growth was enhanced with increased number of air exchanges per hour (2.8 $h^{-1}$ ). Overall, treatment of 220$\mu$mol. $m^{-2}$ . $s^{-1}$ PPF combined with 2000$\mu$mol.mo $l^{-1}$ C $O_{2}$ and 2.8 $h^{-1}$ NAEH gave the most vigorous growth of Dendranthema grandiflorum R. ‘Bongwhang’ plantlets in vitro.o.

  • PDF

Development of salt-tolerant transgenic chrysanthemum (Dendranthema grandiflorum) lines and bio-assay with a change of cell specificity (내염성 국화 형질전환 계통 육성 및 저항성 검정과 세포특성 변화)

  • Kang, Chan-Ho;Yun, Seung-Jung;Han, Bum-So;Lee, Gong-Joon;Choi, Kyu-Hwan;Park, Jong-Suk;Shin, Yong-Kyu
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Recently the increasing of vinyl and green houses and development of reclaimed land including Saemangeum induced the need for breeding salt-tolerant crops which can survive and grow in high salinity soil. So we try to develop salt-tolerant transgenic chrysanthemum (Dendranthema grandiflorum.) lines by using anti-porter gene TANHX and HVNHX. Through marker selection and plant regeneration step, we could get 284 putative transgenic chrysanthemum lines. On selected putative transgenic plants, 40 candidates were used for genetic analysis and 30 lines could be made up of target size band on PCR, so about 75% of marker selected lines were decided as real transgenic lines. Selected 284 transgenic lines were also used for salt-tolerance test as a range of NaCl 0.2 ~ 1.2% (300 mM). As a result of salt-tolerance test, 15 selected transgenic lines could live and grow on the continuous supply of 0.8% (200 mM) NaCl solution and another 7 lines were could survive under 1.2% (300 mM) NaCl solution. This salt-tolerant transgenic lines under salt stress also lead a cell alternation especially a guard cell. A stressed guard cell be swelled and grow larger in proportion to NaCl concentration. TTC test for cell viability on transgenic chrysanthemum lines pointed out that more strong salt-tolerant lines can be live more than another under same salt stress. The numerical value of strong salt-tolerant 7 transgenic lines were 0.206 ~ 0.331 under 1.2% NaCl stress, and then it's value is more larger than middle salinity lines' 0.114 ~ 0.193 and non-transgenic's 0.046. And the proline contents as indicated stress compound also pointed out that HVNHX introduced salt-tolerant transgenic lines were less stressed than other under same salt stress. The contents of strong salt-tolerant transgenic lines were 2.255 ~ 2.638 mg/kg and it is much higher than that of middle salinity lines' 1.496 ~ 2.125.

FT-transgenic spray-type Chrysanthemum (Dendranthema grandiflorum Kitamura) showing early-flowering (FT 유전자 형질전환 스프레이 국화 (Dendranthema grandiflorum (Ramat.) Kitamura)의 조기개화성)

  • Lee, Su-Young;Han, Bong-Hee;Hur, Eun-Joo;Shin, Hak-Kee;Lee, Il-Ha;Lee, Eun-Kyung;Kim, Seung-Tae;Kim, Won-Hee;Kwon, O-Hyeon
    • Journal of Plant Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.140-145
    • /
    • 2012
  • The flowering locus T (FT) gene, of which expression will be controlled at high temperature by heat shock promoter (it printed as to HSproFT), was introduced into spray-type chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) 2 cultivars ('Pink PangPang' and 'Pink Pride' by co-cultivation with Agrobacterium tumefaciens strain C58C1 harboring pCAMBIA2300 containing the HSproFT gene. After leaf segments of the 2 cultivars were infected with the A. tumafaciens with C58C1 as explants, shoots were regenerated from the explants cultured on the $1^{st}$ selection medium (MS basal salts + 1.0 mg/L BA, 0.5 mg/L IAA + 10 mg/L kanamycin + 0.7% plant agar, pH 5.8). The shoots were transferred into the $2^{nd}$ selection medium (MS basal salts + 1.0 mg/L BA, 0.5 mg/L IAA + 20 mg/L kanamycin + 0.7% plant agar, pH 5.8). One hundred seventeen plantlets from 'Pink PangPang' and 5 ones from 'Pink Pride' were confirmed as transformants by PCR analysis. Twenty six of the transformants and non-transformants were acclimatized and established well in a green house. Eights of 26 transgenic lines showed flower bud 1.7~10 days earlier than nontransgenic plants, and 24 of them flowered 1~6 days earlier than non- transgenic plants. The shape and color of flower of all HSproFT-transgenic lines were not different with those of non- transgenic plants.

Antioxidant Effect according to Extraction Method in Extracts of Dendranthema zawadskii var. yezoense and Cosmos bipinnatus (추출 방법에 따른 남구절초와 코스모스 추출물의 항산화 효과)

  • Woo, Jeong-Hyang;Shin, So-Lim;Chang, Young-Deug;Lee, Cheol-Hee
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.462-468
    • /
    • 2010
  • Top parts of $Dendranthema$ $zawaskii$ var. $yezoense$ (DZY) and $Cosmos$ $bipinnatus$ (CB) are believed to contain substances with antioxidant effects and activity. Present experiments were undertaken to investigate an adequate and efficient extraction method which ensures the highest yield of antioxidant components. Extraction yield was 1.11-1.92 times higher by ultrasonic method than other methods in both species. By 45 minute ultrasonic extraction, total polyphenol contents reached the highest level, $80.70mg{\cdot}g^{-1}$ tannic acid equiv./DW in $Cosmos$ $bipinnatus$ and total flavonoid contents $50.41mg{\cdot}g^{-1}$ naringin equiv./DW in DZY. DPPH radical scavenging activity was almost the same among extraction methods or slightly higher in reflux extraction. The highest DPPH radical scavenging was observed by reflux extract in CB ($RC_{50}=0.135mg{\cdot}mL^{-1}$). ABTS radical scavenging activity was the highest by 15 minute ultrasonic wave in DZY and CB, $RC_{50}=0.159mg{\cdot}mL^{-1}$ and $RC_{50}=0.139mg{\cdot}mL^{-1}$, respectively. High ferrous ion chelating effects were obtained by 30-minute ultrasonic wave in DZY ($RC_{50}=0.803mg{\cdot}mL^{-1}$). Extracts of top parts of DZY obtained by reflux method showed the highest inhibition effect against peroxidation of linoleic acid, and extract of CB obtained by ultrasonic for 45 minutes showed the highest inhibition effect. In conclusion, optimum extraction method should be adjusted according to plant species and antioxidant substances.

Effects of Concentration of Nutrient Solution and Irrigation Frequency on Growth and Flower Quality of Cut Chrysanthemum Grown Hydroponically in Perlite (국화의 펄라이트 양액재배시 양액농도 및 관주주기가 생육과 절화 품질에 미치는 영향)

  • Ji, Eun Young;Oh, Wook;Kim, Sun Hwa;Kim, Ki Sun
    • Horticultural Science & Technology
    • /
    • v.16 no.1
    • /
    • pp.37-39
    • /
    • 1998
  • This study was carried out to investigate the effects of nutrient solution concentration, irrigation frequency on growth, flowering, and cut flower longevity of Dendranthema grandiflorum (Ramat.) Kitamura 'Shuhouno-chikara' hydroponically grown in perlite media. Not only stem length but also mineral contents of each plant organ in nutrient solution culture were much higher than those in soil culture. 1/2S of nutrient solution was good at early stage, but 1S of nutrient solution was better as chrysanthemum growth progressed. Among different concentrations of nutrient solution, mineral contents of each plant part showed no significant difference. 1S treatment of nutrient solution increased the vase life by 3 days than 2S treatment. The growth and mineral contents of each plant organ were great in plants irrigated 8 times a day, because of high moisture contents of medium and high water availability, followed by more frequent nutrient replenishment near roots. There was no correlation between nutrient solution concentration and vase life of cut flower grown in nutrient solution culture. Cut flowers irrigated twice per day had the longer vase life than other treatments (4, 8 times).

  • PDF