• 제목/요약/키워드: Demolition waste

검색결과 100건 처리시간 0.03초

비세척된 재생 조골재 콘크리트의 강도특성 (Strength Properties of Concrete using Non-Washed Recycled Coarse Aggregate)

  • 윤현도;김문섭;임경택;정수영;윤석천
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.489-494
    • /
    • 1998
  • This paper describes the possibility to reuse concrete waste produced by demolition of reinforced concrete structures as aggregate for concrete from the viewpoint of strength. Concrete rubble obtained from the demolished buildings at Taejon were crushing machine to reuse as coarse aggregate. The strength properties, such as compressive strength, splitting tensile strength, bending strength and shear strength, of recycled and normal concrete were examined and compared experimentally when water cement ratio was varied. From the results of this study, it was thought that in case of non-washed aggregate concrete, strength properties of recycled coarse aggregate is similar to that of normal concrete, In W/C 55%~45%, stress-strain curve of recycled concrete shows more stable than that of normal concrete, while in W/C 35%, it shows brittle behavior.

  • PDF

교차영향분석을 활용한 건설 공종별 주요 친환경기술 도출 (Elicitation of Key Environmental-Friendly Technologies for Construction Activities Using Cross-Impact Analysis)

  • 이상규;강고운;김창원;김춘학;조훈희;강경인
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.155-157
    • /
    • 2012
  • Recently, construction industry makes a great effort on minimizing the environmental impact. While various environmental-friendly technologies are applied to the operating phase of buildings, few equipment or machinery are partly used during the construction phase. For this reason, this study carried out a comprehensive analysis on environmental-friendly technologies for the whole construction process. In this study, appropriate environmental-friendly technologies of each construction activity were elicited to improve the environment of construction sites. Environmental-friendly technologies and construction activities were selected by professional consultation and descriptive statistics analysis, and proper environmental-friendly technologies were elicited from Cross-Impact Analysis. As a result, waste disposal and recycling technology was highly effective for demolition work while development of replacing materials was for reinforced concrete work.

  • PDF

석재 외피 시공을 위한 알루미늄 빔 지지공법 연구 (A study on the Aluminium Beam Methods for Building a Stone Finished Envelope)

  • 김장욱;이영래;홍성욱;도선붕;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.235-242
    • /
    • 2012
  • In recently constructed building, It has become fashionable again that the heavy external skin system such as a Stone Finished Envelope. There are Squared Steel Pipe Methods, C-Shaped Steel Pipe Methods, and Aluminum Beam Methods in the structure of a heavy external skin system. The Aluminum Beam Methods is often misunderstood as a Plane Truss Structure, but this method is not appropriate to be called to a truss structure but a beam methods. The Aluminum Beam Methods is the most Eco-friendly methods in terms of Quality assurance, Efficiency, Safety, Construction period, Durability, and Recyclability. And this Methods is also very appropriate in considering the point of Energy conservation, Waste reduction, Long-life architecture, Replacement parts, Environmental protection, Public efficiency, and Building demolition.

  • PDF

Mechanical behavior of concrete comprising successively recycled concrete aggregates

  • Verma, Surender K.;Ashish, Deepankar K.
    • Advances in concrete construction
    • /
    • 제5권4호
    • /
    • pp.303-311
    • /
    • 2017
  • The concrete industry of developing countries like India consumes majority of natural resources. The increase in population has necessitated the construction of more and more structures. Further many structures have completed their life span or have undergone damages thus warranting the demolition of these structures. India produces approximately 23.75 million tons of recycled concrete aggregate (RCA) annually. The natural resources are depleting at a higher rate with the increasing demand of concrete industry. This difficulty can be reduced with the use of RCA in land fill and concrete manufacturing. Use of RCA can provide cost savings and better energy utilization. This paper presents mechanical behavior of concrete comprising successively recycled concrete aggregate. Mechanical properties of recycled concrete get affected with number of recycling. In mix design successive recycled concrete aggregate (SRCA) was used in place of natural aggregates (NA) with 100% replacement. The test results of the compressive, flexural strength and pulse velocity were obtained for 14 and 28 days of curing age which showed significant improvement in results.

STUDY ON THE CONTINUED MAINTENANCE FACTOR FOR THE DESIGN OF USER MANUAL IN APARTMENT HOUSING ACCORDING TO THE RESIDENTS' NEEDS

  • Jung-Hee Jung;Hee-Chang Seo;Ju-Hyung Kim;Jae-Jun Kim
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.235-242
    • /
    • 2013
  • With the recent global trends in environmental preservation, the importance of sustainable construction is being highlighted in Korea. In particular, the trend is being discussed about life cycle of the apartment houses in various aspects. However the Korean construction market and housing policy have been increasingly focusing on supplier. Structures become progressively obsolete after a certain period, but their durability can be extended with proper maintenance management. Accordingly, if maintenance management on the structures is made efficiently, waste of construction energy and damage to the environment and economic loss due to early demolition and reconstruction can be effectively prevented. Therefore, this study aims to suggest the user manual design for the efficient maintenance in apartment housing

  • PDF

회분식 발효조에서 미생물을 이용한 라군 슬러지 질산염 폐액의 탈질 공정 평가 (Bio-Denitrification of the Nitrate Waste Solution from the Lagoon Sludge in a Batch Fermenter)

  • 오종혁;이오미;황두성;최윤동;황성태;조병렬;박진호
    • 방사성폐기물학회지
    • /
    • 제4권2호
    • /
    • pp.153-159
    • /
    • 2006
  • 우라늄 변환시설 가동 중 발생하여 라군(lagoon)에 저장중인 방사성 슬러지 폐기물에 대한 처리는 시설 해체과정에서 매우 중요한 업무 중 하나이다. 슬러지 구성성분 중 다량을 차지하는 질산암모늄의 폭발 위험성 등으로 인해 미생물을 이용한 질산염의 분해는 질산염을 안정적으로 처리할 수 있는 효과적인 방법이라 할 수 있다. 본 연구에서는 라군 슬러지의 약 60 wt%를 차지하는 질산염을 혐기성 균주의 하나인 Pseudomonas halodenidificans를 이용하여 탈질하기위한 공정 변수에 대한 영향을 평가하였다. 온도, 질산염 농도, 전자공여체의 영향, C/N 비율, 초기 접종하는 균주의 비율, pH등의 공정변수에 대하여 실험한 이번 결과는 향후 연속식 공정 설계를 위한 기초 자료로 사용될 것이다.

  • PDF

우라늄으로 오염된 자갈의 제염 (Decontamination of Uranium-Contaminated Gravel)

  • 박욱량;김계남;김승수;문제권
    • 방사성폐기물학회지
    • /
    • 제13권1호
    • /
    • pp.35-43
    • /
    • 2015
  • 선행핵연료 주기관련 시설의 해체/복원 시 방사능으로 오염된 다량의 자갈폐기물이 발생할 수 있다. 하지만 현재 방사성 오염 자갈을 제염하기 위한 기초자료가 부족하므로, 본 연구에서는 토양세척법을 응용하여 방사능 오염 자갈을 제염하는데 필요한 기초실험을 수행하였다. 효율적인 제염을 위하여 제염제를 비교하여 선정하였는데, 우라늄으로 오염된 자갈의 제염제로는 증류수나 계면활성제보다 0.1 M의 질산을 사용하였을 때 제염이 잘 되었다. 또한, 제염효율을 높이고 제염시간을 단축하기 위하여 우라늄 오염 자갈을 파쇄/분쇄한 후 세척한 결과, 입자의 크기가 작으면 작을수록 제염효율이 높고 자체처분허용농도를 만족하는 것으로 나타났다.

목재 폐기물 재활용의 의의 및 필요성에 대한 고찰 (Investigation on the Significance and Necessity for Recycling of Wood Wastes)

  • 김광철;박희준;정인수
    • 한국가구학회지
    • /
    • 제20권1호
    • /
    • pp.31-41
    • /
    • 2009
  • In our country, most of the wood resources are imported. We faced a continuous rising of wood price by export country's some conditions and excess rising of transport charge, also a shortage of structural size members. In these situation, recycling or reuse of wood residues and wastes under wood processing industry, building construction and demolition is not a option but a prerequisite. In our country, there is a dearth of data on recycling or reuse of wood residues and wastes, so the investigation on the necessity of recycling or reuse of wood residues and wastes was conducted by using the foreign data and documents. First of all, fields and actual conditions for the domestic wood processing industry were surveyed. Then, kinds and signification of wood residues and wastes were organized. Later, the necessity and the signification of recycling or reuse of wood residues were investigated, and postulations for effective recycling and reuse were suggested. Above all, the necessity of grading standards for reuse or recycling and some important consideration for developing grading standards were emphasized. At last, foreign research tendencies and some applications on recycling or reuse of wood residues and wastes were supplemented.

  • PDF

융통성을 고려한 장수명 공동주택 디자인에 관한 연구 (A Study on the Adaptable Long Life Multi-dwelling Housing Design in Korea)

  • 김진희
    • 한국실내디자인학회논문집
    • /
    • 제15권6호
    • /
    • pp.172-177
    • /
    • 2006
  • Most of the Korean multi-dwelling houses have less than 20 years of lifespan. Because the environmental issues such as energy consumption, limited resources, and demolition waste problems became been more and more critical, we now need to focus on long lasting and adaptable buildings. Korean wall bearing apartment buildings are constructed with site cast concrete for core, exterior, and interior together with pipes varied, so when the buildings are old and life style of the users changes, it is difficult to maintain and renovate these buildings. In this study, to resolve the problems described above, two types of Korean long life multi-dwelling housing models which represent improved durability and adaptability responding user's needs and life style changes were proposed with various methods as follows: Either column and beam structure or flat slab structure was used to utilize space better. To make maintenance easier and renovation economical for both public space and each unit, plumbing pipes, ducts, and conduits were clustered at the cores and public corridors with access doors and light weight partitions with steel studs and raised floors or above-ceiling spaces were used in lieu of site cast concrete walls and floor slabs with varied pipes.

Durability properties of mortars with fly ash containing recycled aggregates

  • Kurbetci, Sirin;Nas, Memduh;Sahin, Mustafa
    • Advances in concrete construction
    • /
    • 제13권1호
    • /
    • pp.101-111
    • /
    • 2022
  • The rapid development of the construction industry in the world causes a rapid increase in the consumption of aggregate resources, which leads to the depletion of existing aggregate reserves. The use of recycled aggregate in the production of concrete and mortar may be a good solution to reduce the use of natural raw materials and to reduce demolition waste in the environment. In this study investigating the use of recycled aggregate in mortar production, mortar mixtures were produced by substituting 0%, 25%, 50% and 100% fine recycled aggregate (FRA) instead of natural aggregate. The effect of 20% and 40% fly ash (FA) substitutes on cement mortar performance was also investigated. Compressive and flexural strength, drying shrinkage, abrasion resistance, water absorption and capillary water absorption were investigated on the produced mortars. The increase in the use of FRA reduced the compressive and flexural strengths of mortars. While the capillarity coefficients, water absorption, rapid chloride permeability and drying shrinkage of the mortars increased with the increase in the use of FRA, the effect of the use of fly ash on the rate of increase remained lower. The increased use of FRA has improved abrasion resistance as well.