• Title/Summary/Keyword: Delta Wing

Search Result 80, Processing Time 0.028 seconds

Effects of Strake Planform on the Vortex Flow of a Double-Delta Wing (이중 삼각날개의 와류에 미치는 스트레이크 평면형상의 영향)

  • 손명환;정형석
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.16-23
    • /
    • 2006
  • The effects of strake planform shapes on the vortex formation, interaction, and breakdown characteristics of double-delta wings were investigated through pressure measurements of upper wing surface and off-surface flow visualization. Three different shapes of strakes were attached to a delta wing respectively to form double-delta wing configurations and tested in a medium-sized subsonic wind tunnel. The results of the pressure measurements indicated that the strake planform having a higher sweep angle generated more concentrated vortex systems at upstream locations, which, however, tended to diffuse and break down much faster at the downstream locations. It was also found from the off-surface visualization results that the cause for the vortex concentration was due to the acceleration of coiling and merging processes between the wing and strake vortices.

Effects of Strake Incidence-Angle on the Vortex Flow of a Double-Delta Wing (스트레이크 붙임각이 이중 삼각날개의 와류에 미치는 영향)

  • 손명환;정형석;장조원
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.7-15
    • /
    • 2006
  • The effects of strake incidence-angle on the vortex characteristics and the wing-surface pressure distribution for a double-delta wing with strake were investigated experimentally. The strake incidence-angle of negative sign(strake is pitched down from the main-wing upper-surface) increased the suction pressure of the wing-upper surface, which was the same effect of increase of angle of attack. This change of the suction pressure was caused by the closer movement of the vortex cores to the wing upper surface rather than the increase of the vortex strength.

Vortex Interaction Characteristics of a Delta Wing/LEX (삼각날개/LEX에서의 와류 상호작용 특성)

  • 이기영;손명환
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.77-86
    • /
    • 2002
  • An experimental study of the vortex interaction characteristics of a delta wing/LEX configuration was conducted in a wind tunnel using the micro water droplet and laser beam sheet visualization technique. The main focus of this study was to analyze the effect of the angle of attack and sideslip angle on the vortex interaction and vortex breakdown. These tests were accomplished at angles of attack between $16^{\circ}$ and $28^{\circ}$ and sideslip angle between $0^{\circ}$ and $-15^{\circ}$ at free-stream velocity of 6.2 m/s. Flow visualization data provide a description of the vortex interaction between LEX and wing vortices, and of the vortex breakdown. The introduction of LEX vortex stabilized the vortical flow, and delayed the vortex breakdown up to higher angle of attack. The vortex interaction and breakdown was promoted on the windward side, whereas they are suppressed on the leeward side.

Numerical study on aerodynamics of banked wing in ground effect

  • Jia, Qing;Yang, Wei;Yang, Zhigang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.2
    • /
    • pp.209-217
    • /
    • 2016
  • Unlike conventional airplane, a WIG craft experiences righting moment and adverse yaw moment in banked turning in ground effect. Numerical simulations are carried out to study the aerodynamics of banked wing in ground effect. Configurations of rectangular wing and delta wing are considered, and performance of endplates and ailerons during banking are also studied. The study shows that righting moment increase nonlinearly with heeling angle, and endplates enhance the righting. The asymmetric aerodynamic distribution along span of wing with heeling angle introduces adverse yaw moment. Heeling in ground effect with small ground clearance increases the vertical aerodynamic force and makes WIG craft climb. Deflections of ailerons introduce lift decrease and a light pitching motion. Delta wing shows advantage in banked turning for smaller righting moment and adverse yaw moment during banking.

Aerodynamic Characteristics of Delta Wing According to Leading Edge Geometries (앞전 형상에 따른 삼각 날개의 공력 특성)

  • Jin, Hak-Su;Kim, Sung-Cho;Kim, Jeong-Soo;Choi, Jong-Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.5 no.2
    • /
    • pp.56-63
    • /
    • 2007
  • Flow visualization and aerodynamic characteristics of delta wings with two different leading edge geometries are investigated by PIV system and wind tunnel balance when the Reynolds number is about based on the freestream velocity and the root chord length. Delta wing models have 65-deg swept angle, and the leading edge shapes are divided into round- and sharp- type. The experimental results indicated that the leading-edge vortex strength and aerodynamic coefficient in the round leading edge are stronger and more, respectively than those in the sharp one. Therefore the flow interactions between vortices and the boundary layer are more desirable or more rapidly swirled in the round-type leading edge.

Grid Dependency and Aerodynamic Analysis for Transonic Flow of Delta Wing using CFD (천음속영역의 삼각날개 격자의존성 및 공력해석)

  • Jeong, Kiyeon;Jung, Eunhee;Kang, Dong-Gi;Lee, Daeyeon;Kim, Dukhyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.445-451
    • /
    • 2018
  • This paper describes on introduction of CASE 4(Delta Wing) for EFD-CFD comparison workshop which is in charged of aerodynamic subcommittee of The Korean Society for Aeronautical and Space Science. The wind tunnel test will be performed later, angle of attack is set -5~20deg and mach number is set 0.7, 0.85, 1.2 to solve the transonic flow. The simulation test of grid dependency is conducted to determine the proper grid size of delta wing analysis. The tendency of lift and drag coefficient is determined according to the change of angle of attack based on the selected grid size.

Effects of LEX on the Vortex Field over a Delta Wing (LEX가 델타형 날개의 와류 유동장에 미치는 영향)

  • 백승욱;손명환
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.83-90
    • /
    • 2002
  • An experimental study was conducted to investigate the effects of a leading edge extension(LEX) on the vortex flow field over a delta wing by measuring the total pressure distribution in a subsonic wind tunnel. Freestream velocity was 40m/sec and Reynolds number per meter was $1.76{\times}10^6$. The wing with the LEX experienced a strong interaction between the LEX and wing vortices. As the angle of attack increased, the coupled vortex field of these two vortices maintained its strength and concentricity much better than the vortex field over the wing without the LEX.

Velocity Field Measurements Over A Lex/Delta Wing By Triple Axis Hot-Film Anemometry (3축 HOT-FILM 풍속계에 의한 연장된 앞전을 갖는 삼각날개 속도장의 측정)

  • Lee,Gi-Yeong;Son,Myeong-Hwan;Jang,Yeong-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.1-8
    • /
    • 2003
  • Velocity data were acquired at a series of stations in the chordwise direction above a delta wing with leading edge extension, using a triple axis hot film anemometry. Surveys normal to planform yield velocity field data at incidence angle of 24$^{\circ}$and 32$^{\circ}$at a centerline chord Reynolds number of $1.76{\times}10^6$. Experimental results of velocity measurements of mean velocity of three components gave a confidence to quantitative investigate the vortical flow field over a LEX-delta wing with this probe. The present experiments indicated the existence of both wing and LEX vortex where the local mean axial velocity is maximum. It also shown the development of secondary vortex of opposite sign of rotating above the wing surface near the leading edge. The insertion of probe across the flow field was found to have little influence on the position of the vortex core.

Papers : Vortex Flow and Aerodynamic Load Characteristics of the Delta Wing / LEX Configuration in Sideslip (논문 : 옆미끄럼이 있는 삼각 날개 / LEX 형상의 와류와 공력 특성)

  • Son,Myeong-Hwan;Lee,Gi-Yeong;Baek,Seung-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.37-45
    • /
    • 2002
  • The vortex flow and aerodynamic load characteristics of a $65^{\circ}$ sweep delta wing with the leading edge extension in sideslip condition is investigated experimentally. The freestream velocity is 40 m/sec, which corresponds to a Reynolds number per meter of $1.76{\times}10^6$ based on the wing root chord. The angles of attack range from $12^{\circ}$ to $28^{\circ}$, and the sideslip angles treated are $0^{\circ}$ , $-10^{\circ}$, $-20^{\circ}$. The LEX vortex of the leeward side. The LEX and wing vortics coalesce to to become a concentrated strong vortex or to break down at down at downstream position. Due to the interation of the LEX and wing vortices, a high suction pressure is maintained on the windward wing surface, and a low suction pressure is formed on the leeward wing surface

Local Heat Transfer Characteristics on Fin Surface of Plate Fin - Oval Tube with Delta Wing Vortex Generators (Plate fin-oval tube 열교환기에서 와류발생체에 의한 fin 표면에서의 국소 열전달 특성)

  • Shin, Seok-Won;Chung, In-Kee;Kim, Soo-Youn
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2390-2395
    • /
    • 2007
  • The present research was experimentally performed to analyze the effect of delta-wing vortex generators(DWVG) on the heat transfer of fin surface of the plate fin-oval tube. The local heat transfer coefficient of the fin surface for four kinds of DWVG's arrangement was measured by the naphthalene sublimation technique for Reynolds numbers ranging from 2000 to 3200. The results showed that the heat transfer of the plate fin-oval tube can be significantly enhanced by DWVG for relatively low Reynolds numbers.

  • PDF