DOI QR코드

DOI QR Code

Grid Dependency and Aerodynamic Analysis for Transonic Flow of Delta Wing using CFD

천음속영역의 삼각날개 격자의존성 및 공력해석

  • Received : 2018.01.31
  • Accepted : 2018.05.25
  • Published : 2018.06.01

Abstract

This paper describes on introduction of CASE 4(Delta Wing) for EFD-CFD comparison workshop which is in charged of aerodynamic subcommittee of The Korean Society for Aeronautical and Space Science. The wind tunnel test will be performed later, angle of attack is set -5~20deg and mach number is set 0.7, 0.85, 1.2 to solve the transonic flow. The simulation test of grid dependency is conducted to determine the proper grid size of delta wing analysis. The tendency of lift and drag coefficient is determined according to the change of angle of attack based on the selected grid size.

본 논문에서는 현재 한국항공우주학회 공기역학부문위원회에서 주관하고 있는 EFD-CFD 비교 워크숍의 여러 과제 중 CASE 4 삼각날개(Delta Wing)의 천음속영역의 유동해석 결과를 작성하였다. 풍동실험은 추후에 진행될 예정이며, -5~20도 받음각 영역에서의 CFD 해석을 수행하였다. 해석을 수행한 마하수는 0.7, 0.85, 1.2이다. 삼각날개의 적합한 해석조건을 찾기 위해서 기준격자 크기를 조절하여 격자의존성 해석을 수행하였고, 선택한 격자로 받음각 변화에 따라 양력계수와 항력계수의 경향을 파악하였다.

Keywords

References

  1. Kim, C. W., "The Objectives of EFDCFD Comparison Workshop and Future Plan," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 45, No. 3, 2017, pp. 191-193. https://doi.org/10.5139/JKSAS.2017.45.3.191
  2. Furman, A., and Breitsamter, C., "Turbulent and Unsteady Flow Characteristics of Delta Wing Vortex Systems," Journal of The Aerospace Science and Technology, ELSEVIER, Vol. 24, No. 1, 2012, pp. 32-44.
  3. Mitchell, A., Molton, P., Barberis, D., and DClery, J., "Characterization of Vortex Breakdown by Flow Field and Surface Measurements," Proceeding of The 38th Aerospace Sciences Meeting & Exhibit, 10-13 January, Reno, NV, U.S.A., 2000.
  4. Rom, J., "High Angle of Attack Aerodynamics: Subsonic, Transonic, and Supersonic Flows," Springer-Verlag, New York, USA., 1992.
  5. Gordnier, R. E., and Visbal, M. R., "Unsteady Vortex Structure over a Delta Wing," Journal of Aircraft, Vol. 31, No. 1, 1994, pp. 243-248. https://doi.org/10.2514/3.46480
  6. Mitchell, A., Molton, P., Barberis, D., and Delery, J., "Vortical substructures in the shear layers forming leading-edge vortices," Proceeding of The 19th AIAA Applied Aerodynamics Conference, Anaheim, CA, U.S.A., AIAA-01-2424, 2001.
  7. Mitchell, A. M., "Experimental data base selected for RTO/AVT numerical and analytical validation and verification: ONERA 70-DEGREE DELTA WING," Proceeding of The 21st AIAA Applied Aerodynamics Conference, Orlando, Florida, U.S.A., AIAA 2003-3941, 2003.
  8. Nelson, R. C., "Unsteady Aerodynamics of Slender Wings," Aircraft Dynamics at High Angle of Attack: Experiments and Modeling, AGARD R-776, 1991, pp. 1-1-1-26.
  9. Son, M. S., Sa, J. H., Park, S. H., Gu, G. B., Kim, M. A., and Jung, K. J., "Analysis on Unsteady RANS Computations of Vortical Flowfields over a 70-degree Delta Wing," Proceeding of The Korean Society of Computational Fluids Engineering Conference, Jeju, Korea, 2013, pp. 181-186.
  10. Son, M. S., and Park, S. H., "Turbulence Model Effects on Flow Prediction around a 70-degree Delta Wing," Proceeding of The Korean Society of Computational Fluids Engineering Conference, Jeju, Korea, 2014, pp. 271-274.
  11. Jin, H. S., Kim, S. C., Kim, J. S., and Choi, J. W., "Aerodynamic characteristics of Delta Wing According to Leading Edge Geometries," Journal of The Korean Society of Visualization, Vol. 5, No. 2, 2007, pp. 56-63. https://doi.org/10.5407/JKSV.2007.5.2.056
  12. Menter, F. R., "Two-equation Eddyviscosity Turbulence Modeling for Engineering Applications," AIAA Journal, Vol. 32, No. 8, 1994, pp. 1598-1605. https://doi.org/10.2514/3.12149