• Title/Summary/Keyword: Delivery Quality Assurance

Search Result 75, Processing Time 0.025 seconds

A Model for Deciding Evaluation Weights in Design-Build Delivery Method (일괄입찰방식의 적격심사분이별 배점 결정모델 개발)

  • Kim Man-Chul;Koo Kyo-Jin;Hyun Chang-Taek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.4 s.26
    • /
    • pp.91-100
    • /
    • 2005
  • Design-build that a single entity performs whole construction process under singular responsibility is one of the project delivery system comes to take expectation effects of time savings, cost saving, and quality assurance. On the other hand, a current domestic method for selecting a design-build contractor is difficult to reflect the purpose of owner and the project characteristics when owner selects the design-build contractor. The purpose of this research is to suggest a model for deciding evaluation weights in design-build which can reflect the purpose of owner and the project characteristics. This research can help owner to select the best suitable design-build contractor for the project.

Software Development Effort Estimation Using Partition of Project Delivery Rate Group (프로젝트 인도율 그룹 분할 방법을 이용한 소프트웨어 개발노력 추정)

  • Lee, Sang-Un;No, Myeong-Ok;Lee, Bu-Gwon
    • The KIPS Transactions:PartD
    • /
    • v.9D no.2
    • /
    • pp.259-266
    • /
    • 2002
  • The main issue in software development is the ability of software project effort and cost estimation in the early phase of software life cycle. The regression models for project effort and cost estimation are presented by function point that is a software sire. The data sets used to conduct previous studies are of ten small and not too recent. Applying these models to 789 project data developed from 1990 ; the models only explain fewer than 0.53 $R^2$(Coefficient of determination) of the data variation. Homogeneous group in accordance with project delivery rate (PDR) divides the data sets. Then this paper presents general effort estimation models using project delivery rate. The presented model has a random distribution of residuals and explains more than 0.93 $R^2$ of data variation in most of PDR ranges.

A Study on Designation and Management of Seoul-Type Elderly Care Facilities (서울형 노인요양시설 지정 및 운영을 위한 정책 연구)

  • Kim, Seok Jun
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.19 no.4
    • /
    • pp.19-28
    • /
    • 2013
  • Purpose: The purpose of this study to assess long-term care facilities in Seoul and certificate Seoul-type elderly care facilities. After certification, Seoul city can provide certificated facilities with budget and support to improve service quality. Methods: Questionnaires to elderly care facilities experts and field surveys to facilities in Seoul have been conducted for the data collection. Results: The result of this study can be summarized into three points. The first one is that a direction of operation for Seoul-type elderly care facilities is to improve manpower and provide special program for enforcing quality assurance. The second one is that this study provide index of evaluation for Seoul-type elderly care facilities. The indexes include management, facility environment and safety, service delivery process, and service results. The third one is that management plan for this policy should be carried out. The management plan include demonstration project, opinion research. Implications: Seoul-type elderly care facilities can have positive effects on quality of service. For the introduction of this policy, Seoul city and autonomous Gu have to make careful preparations for this policy.

Isocenter Verification Using Linac-Gram Films Taken with Angiolocalizer : Improved Quality Assurance of Fractionated Stereotactic Radiation Therapy(FSRT) (Angiolocalizer를 사용하여 얻어진 Linac-Gram을 이용한 조사야 중심의 정확도 평가 (FSRT의 진보된 Quality Assurance))

  • Cho, Jung-Keun;Park, Young-Hwan;Ju, Sang-Kyu;Kim, Young-Gon;Cho, Hyun-Sang
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.9 no.1
    • /
    • pp.25-28
    • /
    • 1997
  • With the advances in radiation therapy technology and equipment, the need for more accurate and safer radiation delivery to the target region has been continuously growing. Stereotactic Radiosurgery(SRS) is a good example of $^{\ast}Accuracy^{\ast}$ but has a substantial risk of causing severe late neurological damages. Fractionated Stereotactic Radiation Therapy(FSRT) is a modification of SRS enabling conventional fractionation with maintaining accuracy using noninvasive and relocatable frame. Verification of mechanical accuracy in FSRT has been done according to the manufacture's recommendations using RLPP, LTLF, and Depth-helmet. In order to reinforce this, we have developed additional novel verification procedure using Linac-grams with the Angiolocalizer attached on the GTC frame, which are then digitized into the planning software(X-Knife) to generate the three dimensional coordinates for cmoparison. This method has been successful in such ways that the anatomical landmarks are identifiable on the Linac-gram films and that the serial comparisons of the stereotactic coordinates of the isocenter are possible with more certainty a along the FSRT course than before.

  • PDF

The Study on the Head and Neck Phantom for Quality Assurance of Intensity Modulated Radiotherapy (세기변조방사선치료의 정도관리를 위한 두경부 팬톰 제작에 관한 연구)

  • Shin Dongho;Park Sung-Yong;Kim Joo Young;Lee Se Byeong;Cho Jung Keun;Kim Dae Yong;Cho Kwan Ho
    • Progress in Medical Physics
    • /
    • v.16 no.1
    • /
    • pp.39-46
    • /
    • 2005
  • For the QA of IMRT treatment of head and neck cancer by using M3 (BrainLAB Inc. Germany), it is not easy to measure delivery dose exactly because the dose attenuation appears by the couch according to the position of table and gantry. In order to solve this problem, we fabricated head and neck phantom which would be implemented on the couch mount of Brain Lab Inc. We investigated dose attenuation by the couch and found the difference of dose distribution by the couch, in the applying this phantom to the clinic. After measurement, we found that point dose attenuation was 35% at maximum and dose difference was 5.4% for a point dose measurement of actual patient quality assurance plan.

  • PDF

A Method to Calculate a Pass Rate of the ${\gamma}$-index Analysis in Tomotherapy Delivery Quality Assurance (DQA) (단층치료기를 이용한 방사선 치료의 환자별 정도관리 평가를 위한 감마인덱스의 정량화 방법)

  • Park, Dahl;Kim, Yong-Ho;Kim, Won-Taek;Kim, Dong-Won;Kim, Dong-Hyun;Jeon, Ho-Sang;Nam, Ji-Ho;Lim, Sang-Wook
    • Progress in Medical Physics
    • /
    • v.21 no.4
    • /
    • pp.340-347
    • /
    • 2010
  • DQA, a patient specific quality assurance in tomotherapy, is usually performed using an ion chamber and a film. The result of DQA is analysed with the treatment planning system called Tomo Planning Station (TomoPS). The two-dimensional dose distribution of film measurement is compared with the dose distribution calculated by TomoPS using the ${\gamma}$-index analysis. In ${\gamma}$-index analysis, the criteria such as 3%/3 mm is used and we verify that whether the rate of number of points which pass the criteria (pass rate) is within tolerance. TomoPS does not provide any quantitative information regarding the pass rate. In this work, a method to get the pass rate of the ${\gamma}$-index analysis was suggested and a software PassRT which calculates the pass rate was developed. The results of patient specific QA of the intensity modulated radiation therapy measured with I'mRT MatriXX (IBA Dosimetry, Germany) and DQA of tomotherapy measured with film were used to verify the proposed method. The pass rate was calculated using PassRT and compared with the pass rate calculated by OmniPro I'mRT (IBA Dosimetry, Germany). The average difference between the two pass rates was 0.00% for the MatriXX measurement. The standard deviation and the maximum difference were 0.02% and 0.02%, respectively. For the film measurement, average difference, standard deviation and maximum difference were 0.00%, 0.02% and 0.02%, respectively. For regions of interest smaller than $24.3{\times}16.6cm^2$ the proposed method can be used to calculate the pass rate of the gamma index analysis to one decimal place and will be helpful for the more accurate DQA in tomotherapy.

The Evaluation and Fabrication of Photoconductor Sensor for Quality Assurance of Radiation Therapy Devices (방사선치료기기 정도관리를 위한 광도전체 센서 제작 및 평가)

  • Kang, Sang Sik;Noh, Sung Jin;Jung, Bong Jae;Noh, Ci Chul;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.565-569
    • /
    • 2016
  • Recently, a use of linear accelerator with a multi-leaf collimator(MLC) for radiation therapy is increasing. The importance of quality assurance (QA) for the linear accelerator is emphasized as the side effects of the inaccurate delivery of the radiation beam has been increased according to the high dose irradiation technique. In this study, The $HgI_2$ and $PbI_2$ photoconductor layer samples of $400{\mu}m$ thickness were fabricated using sedimentation method among particle-in-binder technology. From the fabricated samples, the electrical properties(dark current, output current, response properties and linearity) were investigated. From the experimental results, $HgI_2$ has good charge signal generation and linearity. Finally, from the signal response results about various thickness of $HgI_2$ sensor, the signal creation efficiency of $400{\mu}m$ thickness of $HgI_2$ sensor has the highest value and the excellent reproducibility below ${\pm}2.5%$.

Verification of Mechanical Leaf Gap Error and VMAT Dose Distribution on Varian VitalBeamTM Linear Accelerator

  • Kim, Myeong Soo;Choi, Chang Heon;An, Hyun Joon;Son, Jae Man;Park, So-Yeon
    • Progress in Medical Physics
    • /
    • v.29 no.2
    • /
    • pp.66-72
    • /
    • 2018
  • The proper position of a multi-leaf collimator (MLC) is essential for the quality of intensity-modulated radiation therapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) dose delivery. Task Group (TG) 142 provides a quality assurance (QA) procedure for MLC position. Our study investigated the QA validation of the mechanical leaf gap measurement and the maintenance procedure. Two $VitalBeam^{TM}$ systems were evaluated to validate the acceptance of an MLC position. The dosimetric leaf gaps (DLGs) were measured for 6 MV, 6 MVFFF, 10 MV, and 15 MV photon beams. A solid water phantom was irradiated using $10{\times}10cm^2$ field size at source-to-surface distance (SSD) of 90 cm and depth of 10 cm. The portal dose image prediction (PDIP) calculation was implemented on a treatment planning system (TPS) called $Eclipse^{TM}$. A total of 20 VMAT plans were used to confirm the accuracy of dose distribution measured by an electronic portal imaging device (EPID) and those predicted by VMAT plans. The measured leaf gaps were 0.30 mm and 0.35 mm for VitalBeam 1 and 2, respectively. The DLG values decreased by an average of 6.9% and 5.9% after mechanical MLC adjustment. Although the passing rates increased slightly, by 1.5% (relative) and 1.2% (absolute) in arc 1, the average passing rates were still within the good dose delivery level (>95%). Our study shows the existence of a mechanical leaf gap error caused by a degenerated MLC motor. This can be recovered by reinitialization of MLC position on the machine control panel. Consequently, the QA procedure should be performed regularly to protect the MLC system.

The Clinical Implementation of 2D Dose Distribution QA System for the Patient Specific Respiratory-gated Radiotherapy (호흡동조 방사선치료의 2차원 선량 분포 정도관리를 위한 4D 정도관리 시스템 개발)

  • Kim, Jin-Sung;Shin, Eun-Hyuk;Shin, Jung-Suk;Ju, Sang-Gyu;Han, Young-Yih;Park, Hee-Chul;Choi, Doo-Ho
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.127-136
    • /
    • 2010
  • Emerging technologies such as four-dimensional computed tomography (4D CT) is expected to allow clinicians to accurately model interfractional motion and to quantitatively estimate internal target volumes (ITVs) for radiation therapy involving moving targets. A need exists for a 4D radiation therapy quality assurance (QA) device that can incorporate and analyze the patient specific intrafractional motion as it relate to dose delivery and respiratory gating. We built a 4D RT prototype device and analyzed the patient-specific 4D radiation therapy QA for 2D dose distributions successfully. With more improvements, the 4D RT QA prototype device could be an integral part of a 4D RT decision process to confirm the dose delivery.