• Title/Summary/Keyword: Deleterious effects

Search Result 244, Processing Time 0.03 seconds

Effect of Replacing Corn Silage with Whole Crop Rice Silage in Total Mixed Ration on Intake, Milk Yield and Its Composition in Holsteins

  • Ki, K.S.;Khan, M.A.;Lee, W.S.;Lee, H.J.;Kim, S.B.;Yang, S.H.;Baek, K.S.;Kim, J.G.;Kim, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.516-519
    • /
    • 2009
  • This study was conducted to investigate the effects of replacing whole crop corn silage (WCCS) with whole crop rice silage (WCRS) in the total mixed ration (TMR) on nutrient intake, milk yield and its composition in Holstein cows. The Chucheong rice variety (Oryza sativa L. Japonica) and corn (Pioneer 32 P75) were harvested at yellow-ripe stage and were ensiled in round bales and in trench silos, respectively. Two TMR containing either WCCS or WCRS were prepared. These diets were randomly assigned to 16 midlactating Holstein cows (8 cows per treatment) and were fed for 120 days. The first 20 days were used for dietary adaptation and for the next 100 days daily feed intake, milk yield and its composition were recorded. The pH, lactic acid, NDF, ADF, CP, Ca and P contents were similar in WCRS and WCCS. The DM, ash and EE contents of WCRS were greater compared with WCCS. Nutrient (DM, NDF, TDN and CP) intakes were similar in cows fed WCCS- and WCRS-based TMR. Daily and 4% fat corrected milk yield were not affected by the treatments. Milk composition (percent milk fat, protein, lactose and total solids) was similar in cows fed either WCCS- or WCRSbased TMR. The concentration of milk urea N was greater in cows fed WCRS-based TMR than those fed WCCS-based TMR. In conclusion, round-baled WCRS can replace WCCS in the diet of mid- to late-lactating Holsteins without any deleterious effects on feed consumption, milk yield and its composition. The present findings raise the possibility that WCRS can be used as an alternative roughage source in the diets of dairy cows in countries with surplus rice production.

Oxidative Stress in Extrahepatic Tissues of Rats Co-Exposed to Aflatoxin B1 and Low Protein Diet

  • Rotimi, Oluwakemi A.;Rotimi, Solomon O.;Oluwafemi, Flora;Ademuyiwa, Oladipo;Balogun, Elizabeth A.
    • Toxicological Research
    • /
    • v.34 no.3
    • /
    • pp.211-220
    • /
    • 2018
  • Early life exposure to aflatoxin B1 (AFB1) and low protein diet through complementary foods during weaning is common in parts of Africa and Asia. This study evaluated the effect of co-exposure to AFB1 and low protein diet on the extrahepatic tissues of rats. Twenty-four three-week old weanling male albino rats were used for this study and were randomly assigned into four groups: group 1 served as control and was fed normal protein diet (20% protein), group 2 was fed low protein diet (5% protein), group 3 was fed normal protein diet + 40 ppb AFB1 while group 4 received low protein diet + 40 ppb AFB1, all for eight weeks. Afterward, biomarkers of anemia (packed cell volume (PCV), hemoglobin) and kidney function (urea, uric acid, and creatinine) were determined in the blood while biomarkers of oxidative stress were determined in the tissues spectrophotometrically. Co-exposure to AFB1 and low protein diet significantly (p < 0.05) decreased body weight gain and PCV, increased biomarkers of kidney functions and induced oxidative stress in the tissues studied. There was significant (p < 0.05) reduction in glutathione concentration while TBARS was significantly increased in the tissues. Co-exposure to AFB1 and low protein diet had additive effects on decreasing the weight gain and potentiation effect of kidney dysfunction in the rats. The co-exposure also decreased antioxidant enzymes and increased oxidant status in the tissues. Our results demonstrate that this co-exposure has deleterious health effects on extrahepatic tissues and should be a public health concern especially in developing countries where AFB1 contamination is common.

Effect of Antioxidants and Oxidized Fat on the Performance of Broiler Chicks (항상화제와 산패지방이 육계의 생산성에 미치는 영향)

  • 남궁환;스티브리슨;백인기
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2000.11a
    • /
    • pp.36-53
    • /
    • 2000
  • Five experiments were conducted to investigate the effects of antioxidants(Santoquin and Oxiban) using fresh or oxidized fat on the performance of broiler chicks. Day-old broiler chicks (except for Experiment 5 in which 6-d-ol birds were given experimental diets for 10 d) were fed diets containing fresh or oxidized fat (animal-vegetable fat blend in Experiments 1, 4, and 5 and corn oil in Experiments 2 and 3) with or without graded concentrations of Santoquin (0,250, 500 ppm in Experiments 1 and 2 and 0, in Experiment 4 and 400 ppm with 0.1% lipase in Experiment 5) of 2wk. In all experiments, birds fed fresh fat gained more weight, had better feed/gain, together with higher AME$_{n}$ and apparent fat digestibility (Experiments 1 and 2) than birds fed oxidized fat(P<0.05). There was no interaction among fat sources and antioxidants on the performance of chicks in any experiment. In Experiment 3, Santoquin more than 200 ppm resulted in a reduction in weight gain and feed intake(P<0.05). The livers of chicks fed oxidized fat in Experiments 2 and 5 had higher malondialdehyde (MDA) values (P<0.05) Chicks fed oxidized fat with 250 ppm Santoquin in Experiment 2 had lower liver MDA values, although this situation did not occur in Experiments 1, 4, and 5. These results indicate that antioxidant supplements can alleviate most deleterious effects of feeding oxidized fat and that supplementation of Santoquin more than 200 ppm has a negative effect on the performance of broiler chicks.s.

  • PDF

Effects of Rapid Weight Loss on Body Composition and Heinz Body Formation in Middle-School Wrestlers (중학교 레슬링 선수의 단기간 체중 감량이 신체 구성과 적혈구 Heinz body 형성에 미치는 영향)

  • Kim, Jong-Oh;Kim, Young-Uk;Yoon, Jin-Hwan
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.884-889
    • /
    • 2006
  • The purpose of this study was to examine the changes of body composition and heinz body blood component after 3 days rapid weight loss(5.16% of total body weight) through combined method with total food restriction and dehydration. The result were as follows: The average weight showed a significant difference between before and after rapid weight loss(p < .05). The percentage of body fat showed some decrease in average with $12.14{\pm}1.80\;(%)$ after weight decrement in an average of $12.68{\pm}1.69\;(%)$ before rapid weight loss, but the difference that noted did not show. The body fluid showed a significant difference between before and after rapid weight loss(p < .05). RDW, ESR, and Heinz body formation showed a significant increase after rapid weight loss. It was concluded that rapid weight loss techniques result in deleterious effects on body composition and red blood cell in middle school wrestler.

Delivery of Hypoxia Inducible Heme Oxygenase-1 Gene Using Dexamethasone Conjugated Polyethylenimine for Protection of Cardiomyocytes under Hypoxia

  • Kim, Hyun-Jung;Kim, Hyun-Ah;Choi, Joon-Sig;Lee, Min-Hyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.897-901
    • /
    • 2009
  • Heme oxygenase-1 (HO-1) is an anti-inflammatory and anti-apoptotic protein and has been applied to various gene therapy researches. However, constitutive expression of HO-1 may induce deleterious side effects. In this research, hypoxia inducible HO-1 expression plasmid, pEpo-SV-HO-1, was constructed with the erythropoietin (epo) enhancer and simian virus 40 (SV40) promoter to avoid these unwanted side effects. Dexamethasone conjugated polyethylenimine (PEI-Dexa) was used as a gene carrier. It was previously reported that dexamethasone protected cardiomyocytes from apoptosis under hypoxia. In this research, PEI-Dexa reduced the caspase-3 level in hypoxic H9C2 cardiomyocytes as a derivative of dexamethasone, suggesting that PEI-Dexa is an anti-apoptotic reagent as well as a gene carrier. pEpo-SV-HO-1 was transfected to H9C2 cardiomyocytes using PEI-Dexa and the cells were incubated under normoxia or hypoxia. HO-1 expression was induced in the pEpo-SV-HO-1 transfected cells under hypoxia. In addition, cell viability under hypoxia was higher in the pEpo-SV-HO-1 transfected cells than the pEpo-SV-Luc transfected cells. Also, caspase-3 level was reduced in the pEpo-SV-HO-1 transfected cells under hypoxia. In addition to the anti-apoptotic effect of PEI-Dexa, hypoxia inducible HO-1 expression by pEpo-SVHO- 1 may be helpful to protect cardiomyocytes under hypoxia. Therefore, pEpo-SV-HO-1/PEI-Dexa complex may be useful for ischemic heart disease gene therapy.

In Vivo Protein Transduction: Delivery of PEP-1-SOD1 Fusion Protein into Myocardium Efficiently Protects against Ischemic Insult

  • Zhang, You-en;Wang, Jia-ning;Tang, Jun-ming;Guo, Ling-yun;Yang, Jian-ye;Huang, Yong-zhang;Tan, Yan;Fu, Shou-zhi;Kong, Xia;Zheng, Fei
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.159-166
    • /
    • 2009
  • Myocardial ischemia-reperfusion injury is a medical problem occurring as damage to the myocardium following blood flow restoration after a critical period of coronary occlusion. Oxygen free radicals (OFR) are implicated in reperfusion injury after myocardial ischemia. The antioxidant enzyme, Cu, Zn-superoxide dismutase (Cu, Zn-SOD, also called SOD1) is one of the major means by which cells counteract the deleterious effects of OFR after ischemia. Recently, we reported that a PEP-1-SOD1 fusion protein was efficiently delivered into cultured cells and isolated rat hearts with ischemia-reperfusion injury. In the present study, we investigated the protective effects of the PEP-1-SOD1 fusion protein after ischemic insult. Immunofluorescecnce analysis revealed that the expressed and purified PEP-1-SOD1 fusion protein injected into rat tail veins was efficiently transduced into the myocardium with its native protein structure intact. When injected into Sprague-Dawley rat tail veins, the PEP-1-SOD1 fusion protein significantly attenuated myocardial ischemia-reperfusion damage; characterized by improving cardiac function of the left ventricle, decreasing infarct size, reducing the level of malondialdehyde (MDA), decreasing the release of creatine kinase (CK) and lactate dehydrogenase (LDH), and relieving cardiomyocyte apoptosis. These results suggest that the biologically active intact forms of PEP-1-SOD1 fusion protein will provide an efficient strategy for therapeutic delivery in various diseases related to SOD1 or to OFR.

Inhibition of Escherichia coli O157:H7 Attachment by Interactions Between Lactic Acid Bacteria and Intestinal Epithelial Cells

  • Kim, Young-Hoon;Kim, Sae-Hun;Whang, Kwang-Youn;Kim, Young-Jun;Oh, Se-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1278-1285
    • /
    • 2008
  • The intestinal epithelial cell (IEC) layer of the intestinal tract makes direct contact with a number of microbiota communities, including bacteria known to have deleterious health effects. IECs possess innate protective strategies against pathogenic challenge, which primarily involve the formation of a physicochemical barrier. Intestinal tract mucins are principal components of the mucus layer on epithelial surfaces, and perform a protective function against microbial damage. However, little is currently known regarding the interactions between probiotics/pathogens and epithelial cell mucins. The principal objective of this study was to determine the effects of Lactobacillus on the upregulation of MUC2 mucin and the subsequent inhibition of E. coli O157:H7 attachment to epithelial cells. In the current study, the attachment of E. coli O157:H7 to HT-29 intestinal epithelial cells was inhibited significantly by L. acidophilus A4 and its cell extracts. It is also important to note that the expression of MUC2 mucin was increased as the result of the addition of L. acidophilus A4 cell extracts (10.0 mg/ml), which also induced a significant reduction in the degree to which E. coli O157:H7 attached to epithelial cells. In addition, the mRNA levels of IL-8, IL-1$\beta$, and TNF-$\alpha$ in HT-29 cells were significantly induced by treatment with L. acidophilus A4 extracts. These results indicate that MUC2 mucin and cytokines are important regulatory factors in the immune systems of the gut, and that selected lactobacilli may be able to induce the upregulation of MUC2 mucin and specific cytokines, thereby inhibiting the attachment of E. coli O157:H7.

Modified Renshen Wumei Decoction Alleviates Intestinal Barrier Destruction in Rats with Diarrhea

  • Guan, Zhiwei;Zhao, Qiong;Huang, Qinwan;Zhao, Zhonghe;Zhou, Hongyun;He, Yuanyuan;Li, Shanshan;Wan, Shifang
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1295-1304
    • /
    • 2021
  • Modified Renshen Wumei decoction (MRWD), a famous traditional Chinese medicine, is widely used for treating persistent diarrhea. However, as the mechanism by which MRWD regulates diarrhea remains unknown, we examined the protective effects of MRWD on intestinal barrier integrity in a diarrhea model. In total, 48 male rats were randomly distributed to four treatment groups: the blank group (CK group), model group (MC group), Medilac-Vita group (MV group) and Chinese herb group (MRWD group). After a 21-day experiment, serum and colon samples were assessed. The diarrhea index, pathological examination findings and change in ᴅ-lactate and diamine oxidase (DAO) contents illustrated that the induction of diarrhea caused intestinal injury, which was ameliorated by MV and MRWD infusion. Metabolomics analysis identified several metabolites in the serum. Some critical metabolites, such as phosphoric acid, taurine, cortisone, leukotriene B4 and calcitriol, were found to be significantly elevated by MRWD infusion. Importantly, these differences correlated with mineral absorption and metabolism and peroxisome proliferator-activated receptor (PPAR) pathways. Moreover, it significantly increased the expression levels of TLR4, MyD88 and p-NF-κB p65 proteins and the contents of IL-1 and TNF-α, while the expression levels of occludin, claudin-1 and ZO-1 proteins decreased. These deleterious effects were significantly alleviated by MV and MRWD infusion. Our findings indicate that MRWD infusion helps alleviate diarrhea, possibly by maintaining electrolyte homeostasis, improving the intestinal barrier integrity, and inhibiting the TLR4/NF-κB axis.

Effects of Altered Calcium Metabolism on Cardiac Parameters in Primary Aldosteronism

  • Lim, Jung Soo;Hong, Namki;Park, Sungha;Park, Sung Il;Oh, Young Taik;Yu, Min Heui;Lim, Pil Yong;Rhee, Yumie
    • Endocrinology and Metabolism
    • /
    • v.33 no.4
    • /
    • pp.485-492
    • /
    • 2018
  • Background: Increasing evidence supports interplay between aldosterone and parathyroid hormone (PTH), which may aggravate cardiovascular complications in various heart diseases. Negative structural cardiovascular remodeling by primary aldosteronism (PA) is also suspected to be associated with changes in calcium levels. However, to date, few clinical studies have examined how changes in calcium and PTH levels influence cardiovascular outcomes in PA patients. Therefore, we investigated the impact of altered calcium homeostasis caused by excessive aldosterone on cardiovascular parameters in patients with PA. Methods: Forty-two patients (mean age $48.8{\pm}10.9$ years; 1:1, male:female) whose plasma aldosterone concentration/plasma renin activity ratio was more than 30 were selected among those who had visited Severance Hospital from 2010 to 2014. All patients underwent adrenal venous sampling with complete access to both adrenal veins. Results: The prevalence of unilateral adrenal adenoma (54.8%) was similar to that of bilateral adrenal hyperplasia. Mean serum corrected calcium level was $8.9{\pm}0.3mg/dL$ (range, 8.3 to 9.9). The corrected calcium level had a negative linear correlation with left ventricular end-diastolic diameter (LVEDD, ${\rho}=-0.424$, P=0.031). Moreover, multivariable regression analysis showed that the corrected calcium level was marginally associated with the LVEDD and corrected QT (QTc) interval (${\beta}=-0.366$, P=0.068 and ${\beta}=-0.252$, P=0.070, respectively). Conclusion: Aldosterone-mediated hypercalciuria and subsequent hypocalcemia may be partly involved in the development of cardiac remodeling as well as a prolonged QTc interval, in subjects with PA, thereby triggering deleterious effects on target organs additively.

Exogenous Bio-Based 2,3-Butanediols Enhanced Abiotic Stress Tolerance of Tomato and Turfgrass under Drought or Chilling Stress

  • Park, Ae Ran;Kim, Jongmun;Kim, Bora;Ha, Areum;Son, Ji-Yeon;Song, Chan Woo;Song, Hyohak;Kim, Jin-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.582-593
    • /
    • 2022
  • Among abiotic stresses in plants, drought and chilling stresses reduce the supply of moisture to plant tissues, inhibit photosynthesis, and severely reduce plant growth and yield. Thus, the application of water stress-tolerant agents can be a useful strategy to maintain plant growth under abiotic stresses. This study assessed the effect of exogenous bio-based 2,3-butanediol (BDO) application on drought and chilling response in tomato and turfgrass, and expression levels of several plant signaling pathway-related gene transcripts. Bio-based 2,3-BDOs were formulated to levo-2,3-BDO 0.9% soluble concentrate (levo 0.9% SL) and meso-2,3-BDO 9% SL (meso 9% SL). Under drought and chilling stress conditions, the application of levo 0.9% SL in creeping bentgrass and meso 9% SL in tomato plants significantly reduced the deleterious effects of abiotic stresses. Interestingly, pretreatment with levo-2,3-BDO in creeping bentgrass and meso-2,3-BDO in tomato plants enhanced JA and SA signaling pathway-related gene transcript expression levels in different ways. In addition, all tomato plants treated with acibenzolar-S-methyl (as a positive control) withered completely under chilling stress, whereas 2,3-BDO-treated tomato plants exhibited excellent cold tolerance. According to our findings, bio-based 2,3-BDO isomers as sustainable water stress-tolerant agents, levo- and meso-2,3-BDOs, could enhance tolerance to drought and/or chilling stresses in various plants through somewhat different molecular activities without any side effects.