Browse > Article
http://dx.doi.org/10.4014/jmb.2201.01025

Exogenous Bio-Based 2,3-Butanediols Enhanced Abiotic Stress Tolerance of Tomato and Turfgrass under Drought or Chilling Stress  

Park, Ae Ran (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University)
Kim, Jongmun (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University)
Kim, Bora (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University)
Ha, Areum (Plant Healthcare Research Institute, JAN153 Biotech Incorporated)
Son, Ji-Yeon (Plant Healthcare Research Institute, JAN153 Biotech Incorporated)
Song, Chan Woo (Research and Development Center, GS Caltex Corporation)
Song, Hyohak (Research and Development Center, GS Caltex Corporation)
Kim, Jin-Cheol (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.5, 2022 , pp. 582-593 More about this Journal
Abstract
Among abiotic stresses in plants, drought and chilling stresses reduce the supply of moisture to plant tissues, inhibit photosynthesis, and severely reduce plant growth and yield. Thus, the application of water stress-tolerant agents can be a useful strategy to maintain plant growth under abiotic stresses. This study assessed the effect of exogenous bio-based 2,3-butanediol (BDO) application on drought and chilling response in tomato and turfgrass, and expression levels of several plant signaling pathway-related gene transcripts. Bio-based 2,3-BDOs were formulated to levo-2,3-BDO 0.9% soluble concentrate (levo 0.9% SL) and meso-2,3-BDO 9% SL (meso 9% SL). Under drought and chilling stress conditions, the application of levo 0.9% SL in creeping bentgrass and meso 9% SL in tomato plants significantly reduced the deleterious effects of abiotic stresses. Interestingly, pretreatment with levo-2,3-BDO in creeping bentgrass and meso-2,3-BDO in tomato plants enhanced JA and SA signaling pathway-related gene transcript expression levels in different ways. In addition, all tomato plants treated with acibenzolar-S-methyl (as a positive control) withered completely under chilling stress, whereas 2,3-BDO-treated tomato plants exhibited excellent cold tolerance. According to our findings, bio-based 2,3-BDO isomers as sustainable water stress-tolerant agents, levo- and meso-2,3-BDOs, could enhance tolerance to drought and/or chilling stresses in various plants through somewhat different molecular activities without any side effects.
Keywords
2,3-Butanediol; abiotic stress; formulation; signaling pathway-related genes;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ruzzi M, Aroca R. 2015. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci. Hort. 196: 124-134.   DOI
2 Li Z, Peng Y, Huang B. 2020. Transcriptional regulation of hydrogen peroxide and calcium for signaling transduction and stress-defensive genes contributing to improved drought tolerance in creeping bentgrass. J. Am. Soc. Hortic. Sci. 1: 1-11.
3 Mhamdi A, Van Breusegem F. 2018. Reactive oxygen species in plant development. Development 145: dev164376.   DOI
4 Al-Hakimi A, Hamada A. 2001. Counteraction of salinity stress on wheat plants by grain soaking in ascorbic acid, thiamin or sodium salicylate. Biol. Plant. 44: 253-261.   DOI
5 Govindasamy V, George P, Aher L, Ramesh SV, Thangasamy A, Anandan S, et al. 2017. Comparative conventional and phenomics approaches to assess symbiotic effectiveness of Bradyrhizobia strains in soybean (Glycine max L. Merrill) to drought. Sci. Rep. 7: 6958.   DOI
6 Voloch M, Jansen NB, Ladisch M, Tsao GT, Narayan R, Rodwell VW. 1985. 2, 3-Butanediol, pp. 933-947. In Moo-Young M, Conney CL, Humphrey AE (eds.), Comprehensive biotechnology, Pergamon Press, New York, USA.
7 Song CW, Chelladurai R, Park JM, Song H. 2020. Engineering a newly isolated Bacillus licheniformis strain for the production of (2R, 3R)-butanediol. J. Ind. Microbiol. Biotechnol. 47: 97-108.   DOI
8 Farooq M, Basra S, Wahid A, Ahmad N, Saleem B. 2009. Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. J. Agron. Crop. Sci. 195: 237-246.   DOI
9 Szalai G, Tari I, Janda T, Pestenacz A, Paldi E. 2000. Effects of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling. Biol. Plant. 43: 637-640.   DOI
10 Dat JF, Lopez-Delgado H, Foyer CH, Scott IM. 2000. Effects of salicylic acid on oxidative stress and thermotolerance in tobacco. J. Plant Physiol. 156: 659-665.   DOI
11 Kloepper JW, Lifshitz R, Zablotowicz RM. 1989. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7: 39-44.   DOI
12 Singh D, Laxmi A. 2015. Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Front. Plant Sci. 6: 895.   DOI
13 Cho SM, Kang BR, Han SH, Anderson AJ, Park J-Y, Lee Y-H, et al. 2008. 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant Microbe. Interact. 21: 1067-1075.   DOI
14 Garg S, Jain A. 1995. Fermentative production of 2, 3-butanediol: a review. Bioresour. Technol. 51: 103-109.   DOI
15 Savchenko T, Kolla VA, Wang C-Q, Nasafi Z, Hicks DR, Phadungchob B, et al. 2014. Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiol. 164: 1151-1160.   DOI
16 Aroca R, Porcel R, Ruiz-Lozano JM. 2012. Regulation of root water uptake under abiotic stress conditions. J. Exp. Bot. 63: 43-57.   DOI
17 Lindow SE, Brandl MT. 2003. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69: 1875-1883.   DOI
18 Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN. 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278: 1-9.   DOI
19 Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW. 2001. Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust. J. Plant Physiol. 28: 829-836.
20 Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, et al. 2002. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148: 2097-2109.   DOI
21 Choudhary D, Sharma K, Gaur R. 2011. Biotechnological perspectives of microbes in agro-ecosystems. Biotechnol. Lett. 33: 1905-1910.   DOI
22 Ji X-J, Huang H, Ouyang P-K. 2011. Microbial 2, 3-butanediol production: a state-of-the-art review. Biotechnol. Adv. 29: 351-364.   DOI
23 Lastochkina O. 2019. Bacillus subtilis-mediated abiotic stress tolerance in plants, pp. 97-133. In Islam MT, Rahman MM, Pandey P, Boehme M, Haesaert G (eds.), Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol, Vol 2. Springer Nature, Bremgarten, Switzerland.
24 Syu M-J. 2001. Biological production of 2, 3-butanediol. Appl. Microbiol. Biotechnol. 55: 10-18.   DOI
25 Cortes-Barco A, Hsiang T, Goodwin P. 2010. Induced systemic resistance against three foliar diseases of Agrostis stolonifera by (2R, 3R)-butanediol or an isoparaffin mixture. Ann. Appl. Biol. 157: 179-189.   DOI
26 Song CW, Park JM, Chung SC, Lee SY, Song H. 2019. Microbial production of 2, 3-butanediol for industrial applications. J. Ind. Microbiol. Biotechnol. 46: 1583-1601.   DOI
27 He X, Jiang J, Wang CQ, Dehesh K. 2017. ORA59 and EIN3 interaction couples jasmonate-ethylene synergistic action to antagonistic salicylic acid regulation of PDF expression. J. Integr. Plant Biol. 59: 275-287.   DOI
28 Yang J, Duan G, Li C, Liu L, Han G, Zhang Y, et al. 2019. The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Fron. Plant Sci. 10: 1349.   DOI
29 Hamada AM. 1998. Effects of exogenously added ascorbic acid, thiamin or aspirin on photosynthesis and some related activities of drought-stressed wheat plants, pp. 2581-2584. In Garab G (ed.), Photosynthesis: Mechanisms and effects, Vol 4. Kluwer Academic Publishers, Dordrecht.
30 Janda T, Szalai G, Tari I, Paldi E. 1999. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 208: 175-180.   DOI
31 Aime S, Alabouvette C, Steinberg C, Olivain C. 2013. The endophytic strain Fusarium oxysporum Fo47: a good candidate for priming the defense responses in tomato roots. Mol. Plant Microbe Interact. 26: 918-926.   DOI
32 Song CW, Rathnasingh C, Park JM, Lee J, Song H. 2018. Isolation and evaluation of Bacillus strains for industrial production of 2, 3-butanediol. J. Microbiol. Biotechnol. 28: 409-417.   DOI
33 Hetherington SE, Oquist G. 1988. Monitoring chilling injury: a comparison of chlorophyll fluorescence measurements, post-chilling growth and visible symptoms of injury in Zea mays. Physiol. Plant. 72: 241-247.   DOI
34 Bleecker AB. 1999. Ethylene perception and signaling: an evolutionary perspective. Trends Plant Sci. 4: 269-274.   DOI
35 Sarwat M, Tuteja N. 2017. Hormonal signaling to control stomatal movement during drought stress. Plant Gene 11: 143-153.   DOI
36 Aroca R, Vernieri P, Irigoyen JJ, Sanchez-Diaz M, Tognoni F, Pardossi A. 2003. Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling-induced water stress. Plant Sci. 165: 671-679.   DOI
37 Jia C, Zhang L, Liu L, Wang J, Li C, Wang Q. 2013. Multiple phytohormone signalling pathways modulate susceptibility of tomato plants to Alternaria alternata f. sp. lycopersici. J. Exp. Bot. 64: 637-650.   DOI
38 Leonetti P, Zonno MC, Molinari S, Altomare C. 2017. Induction of SA-signaling pathway and ethylene biosynthesis in Trichoderma harzianum-treated tomato plants after infection of the root-knot nematode Meloidogyne incognita. Plant Cell Rep. 36: 621-631.   DOI
39 Xu Y, Burgess P, Zhang X, Huang B. 2016. Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS-scavenging systems in Agrostis stolonifera. J. Exp. Bot. 67: 1979-1992.   DOI
40 Yang SF, Hoffman NE. 1984. Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiol. 35: 155-189.   DOI
41 Zhang Z, Li F, Li D, Zhang H, Huang R. 2010. Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta. 232: 765-774.   DOI
42 Arraes FBM, Beneventi MA, De Sa MEL, Paixao JFR, Albuquerque EVS, Marin SRR, et al. 2015. Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance. BMC Plant Biol. 15: 213.   DOI
43 Uji Y, Taniguchi S, Tamaoki D, Shishido H, Akimitsu K, Gomi K. 2016. Overexpression of OsMYC2 results in the up-regulation of early JA-responsive genes and bacterial blight resistance in rice. Plant Cell Physiol. 57: 1814-1827.   DOI
44 Zhu J-K. 2016. Abiotic stress signaling and responses in plants. Cell 167: 313-324.   DOI
45 Srivalli B, Sharma G, Khanna-Chopra R. 2003. Antioxidative defense system in an upland rice cultivar subjected to increasing intensity of water stress followed by recovery. Physiol. Plant 119: 503-512.   DOI
46 Hussain S, Khan F, Cao W, Wu L, Geng M. 2016. Seed priming alters the production and detoxification of reactive oxygen intermediates in rice seedlings grown under sub-optimal temperature and nutrient supply. Front. Plant Sci. 7: 439.   DOI
47 Shekoofa A, Rosas-Anderson P, Carley DS, Sinclair TR, Rufty TW. 2016. Limited transpiration under high vapor pressure deficits of creeping bentgrass by application of Daconil-Action®. Planta 243: 421-427.   DOI
48 Jiang H-Y, Zhang J-L, Yang J-W, Ma H-L. 2018. Transcript profiling and gene identification involved in the ethylene signal transduction pathways of creeping bentgrass (Agrostis stolonifera) during ISR response induced by butanediol. Molecules 23: 706.   DOI
49 Li Z, Ji X, Kan S, Qiao H, Jiang M, Lu D, et al. 2010. Past, present, and future industrial biotechnology in China. Adv. Biochem. Eng. Biotechnol. 122: 1-42.   DOI
50 Tian D, Traw M, Chen J, Kreitman M, Bergelson J. 2003. Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423: 74-77.   DOI
51 Bottomley W. 1909. Some effects of nitrogen-fixing bacteria on the growth of non-leguminous plants. Proc. Roy. Soc. London B. 81: 287-289.   DOI
52 Wang W, Vinocur B, Altman A. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218: 1-14.   DOI
53 Sourour A, Afef O, Mounir R, Mongi BY. 2017. A review: morphological, physiological, biochemical and molecular plant responses to water deficit stress. Int. J. Eng. Sci. 6: 1-4.   DOI
54 Calvo P, Nelson L, Kloepper JW. 2014. Agricultural uses of plant biostimulants. Plant Soil. 383: 3-41.   DOI
55 Soylu E, Soylu S, Baysal O. 2003. Induction of disease resistance and antioxidant enzymes by acibenzolar-S-methyl against bacterial canker (Clavibacter michiganensis subsp. michiganensis) in tomato. J. Plant Pathol. 85: 175-181.
56 Tarchoune I, Sgherri C, Izzo R, Lachaal M, Ouerghi Z, Navari-Izzo F. 2010. Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization. Plant Physiol. Biochem. 48: 772-777.   DOI
57 Cortes-Barco A, Goodwin P, Hsiang T. 2010. Comparison of induced resistance activated by benzothiadiazole,(2R, 3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathol. 59: 643-653.   DOI
58 Baier M, Kandlbinder A, Golldack D, Dietz KJ. 2005. Oxidative stress and ozone: perception, signalling and response. Plant Cell Environ. 28: 1012-1020.   DOI
59 Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48: 909-930.   DOI
60 Kazan K. 2015. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci. 20: 219-229.   DOI
61 Jespersen D, Yu J, Huang B. 2017. Metabolic effects of acibenzolar-S-methyl for improving heat or drought stress in creeping bentgrass. Front. Plant Sci. 8: 1224.   DOI
62 Dat JF, Foyer CH, Scott IM. 1998. Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol. 118: 1455-1461.   DOI