• 제목/요약/키워드: Delay-dependent control

검색결과 89건 처리시간 0.025초

Delay-Dependent Control for Time-Delayed T-S Fuzzy Systems Using Descriptor Representation

  • Jeung, Eun-Tae;Oh, Do-Chang;Park, Hong-Bae
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권2호
    • /
    • pp.182-188
    • /
    • 2004
  • This paper presents a design method of delay-dependent control for T-S fuzzy systems with time delays. Based on parallel distributed compensation (PDC) and a descriptor model transformation of the system, a delay-dependent control is utilized. An appropriate Lyapunov-Krasovskii functional is chosen for delay-dependent stability analysis. A sufficient condition for delay-dependent control is represented in terms of linear matrix inequalities (LMIs).

불확실 시간지연 시스템에 대한 지연량을 고려한 성능보장 제어 (Delay-dependent Guaranteed Cost Control for Uncertain Time-delay Systems)

  • 이영삼;문영수;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.13-13
    • /
    • 2000
  • This paper considers delay-dependent guaranteed cost control for uncertain time-delay systems with norm-bounded parametric uncertainties. A new delay-dependent condition for the existence of the guaranteed cost control law is presented in terms of linear matrix inequalities (LMI). An algorithm involving convex optimization is proposed to design a controller which guarantees the suboptimal minimum of the guaranteed cost of the closed-loop system for all admissible uncertainties.

  • PDF

Delay-dependent Guaranteed Cost Control for Uncertain State-delayed Systems

  • Lee Young Sam;Kwon Oh-Kyu;Kwon Wook Hyun
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권4호
    • /
    • pp.524-532
    • /
    • 2005
  • This paper concerns delay-dependent guaranteed cost control (GCC) problem for a class of linear state-delayed systems with norm-bounded time-varying parametric uncertainties. By incorporating the free weighing matrix approach developed recently, new delay-dependent conditions for the existence of the guaranteed cost controller are presented in terms of matrix inequalities for both nominal state-delayed systems and uncertain state-delayed systems. An algorithm involving convex optimization is proposed to design a controller achieving a suboptimal guaranteed cost such that the system can be stabilized for all admissible uncertainties. Through numerical examples, it is shown that the proposed method can yield less guaranteed cost than the existing delay-dependent methods.

상태와 입력에 구간 시변 시간지연을 가지는 불확실 이산시간 특이시스템의 지연 종속 강인 $H_{\infty}$ 제어 (Delay-dependent Robust $H_{\infty}$ Control for Uncertain Discrete-time Descriptor Systems with Interval Time-varying Delays in State and Control Input)

  • 김종해
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.193-198
    • /
    • 2009
  • In this paper, we consider the design problem of delay-dependent robust $H{\infty}$ controller of discrete-time descriptor systems with parameter uncertainties and interval time-varying delays in state and control input by delay-dependent LMI (linear matrix inequality) technique. A new delay-dependent bounded real lemma for discrete-time descriptor systems with time-varying delays is derived. The condition for the existence of robust $H{\infty}$ controller and the robust $H{\infty}$ state feedback control law are proposed by LMI approach. A numerical example is demonstrated to show the validity of the design method.

A Delay-Dependent Approach to Robust Filtering for LPV Systems with Discrete and Distributed Delays using PPDQ Functions

  • Karimi Hamid Reza;Lohmann Boris;Buskens Christof
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권2호
    • /
    • pp.170-183
    • /
    • 2007
  • This paper presents a delay-dependent approach to robust filtering for linear parameter-varying (LPV) systems with discrete and distributed time-invariant delays in the states and outputs. It is assumed that the state-space matrices affinely depend on parameters that are measurable in real-time. Some new parameter-dependent delay-dependent stability conditions are established in terms of linear matrix inequalities (LMIs) such that the filtering process remains asymptotically stable and satisfies a prescribed $H_{\infty}$ performance level. Using polynomially parameter-dependent quadratic (PPDQ) functions and some Lagrange multiplier matrices, we establish the parameter-independent delay-dependent conditions with high precision under which the desired robust $H_{\infty}$ filters exist and derive the explicit expression of these filters. A numerical example is provided to demonstrate the validity of the proposed design approach.

Robust Stabilization of Uncertain Linear Systems with Time-delay

  • Moon, Young-Soo;Park, Poo-Gyeon;Kwon, Wook-Hyun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제1권2호
    • /
    • pp.128-133
    • /
    • 1999
  • This paper presents a new delay-dependent robust stabilization condition for uncertain time-delay systems. An algorithm involving convex optimization is proposed to compute a suboptimal upper bound of the delay such that the system can be stabilized by the controller for all admissible uncertainties. It is illustrated by numerical examples that the proposed delay-dependent controller can be less conservative than previous results. It is also shown that the proposed delay-dependent controller can even capture the delay-independent stability of the system, which is not possible with existing delay-dependent results.

  • PDF

Compensation of Networked Control Systems Using LMI-based Delay-dependent H_infinity Optimization Method

  • Yoo, Ho-Jun;Ryu, Hee-Seob;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.54.6-54
    • /
    • 2002
  • 1. Introduction 2. The Netwoked Control System Description 2.1 A close-loop system with the network induced delay 2.2 Discretization and State Augmentation of NCS 3. Delay-dependent H_infinity Controller Design for NCS 4. Numerical Example 5. Conclusion

  • PDF

Delay-dependent Stabilization of Singular Systems with Multiple Internal and External Incommensurate Constant Point Delays

  • Xie, Yong-Fang;Gui, Wei-Hua;Jiang, Zhao-Hui
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권4호
    • /
    • pp.515-525
    • /
    • 2008
  • In this paper, the problem of delay-dependent stabilization for singular systems with multiple internal and external incommensurate constant point delays is investigated. The condition when a singular system subject to point delays is regular independent of time delays is given and it can be easily test with numerical or algebraic methods. Based on Lyapunov-Krasovskii functional approach and the descriptor integral-inequality lemma, a sufficient condition for delay-dependent stability is obtained. The main idea is to design multiple memoryless state feedback control laws such that the resulting closed-loop system is regular independent of time delays, impulse free, and asymptotically stable via solving a strict linear matrix inequality (LMI) problem. An explicit expression for the desired memoryless state feedback control laws is also given. Finally, a numerical example illustrates the effectiveness and the availability for the proposed method.

Delay-dependent stabilization for time-delay systems;An LMI approach

  • Cho, H.J.;Park, Ju-H.;Lee, S.G.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1744-1746
    • /
    • 2004
  • This paper focuses on the problem of asymptotic stabilization for time-delay systems. To this end, a memoryless state feedback controller is proposed. Then, based on the Lyapunov method, a delay-dependent stabilization criterion is devised by taking the relationship between the terms in the Leibniz-Newton formula into account. Certain free weighting matrices are used to express this relationship and linear matrix inequalities (LMIs)-based algorithm to design the controller stabilizing the system.

  • PDF

Sliding Mode Control for Robust Stabilization of Uncertain Input-Delay Systems

  • Roh, Young-Hoon;Oh, Jun-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권2호
    • /
    • pp.98-103
    • /
    • 2000
  • This paper is concerned with a delay-dependent sliding mode scheme for the robust stabilization of input-delay systems with bounded unknown uncertainties. A sliding surface based ona predictor is proposed to minimize the effect of the input delay. Then, a robust control law is derived to ensure the existence of a sliding mode on the surface. In input-delay systems, uncertainties given during te delayed time are not directly controlled by the switching control because of causality prolem of them. They can influence the stability of the system in the sliding mode. Hence, a delay-dependent stability analysis for reduced order dynamics is employed to estimate maximum delay bound such that the system is globally asymptotically stable in the sliding mode. A numerical example is given to illustrate the design procedure.

  • PDF