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Robust Stabilization of Uncertain Linear Systems
with Time-delay

Young Soo Moon, PooGyeon Park, and Wook Hyun Kwon

Abstract : This paper presents a new delay-dependent robust stabilization condition for uncertain time-delay
systems. An algorithm involving convex optimization is proposed to compute a suboptimal upper bound of the
delay such that the system can be stabilized by the controller for all admissible uncertainties. It is illustrated by
numerical examples that the proposed delay-dependent controller can be less conservative than previous results. It
is also shown that the proposed delay-dependent controller can even capture the delay-independent stabilizability

of the system, which is not possible with existing delay-dependent results.
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I. Introduction

Since time-delay is often a source of instability in
many engineering systems, there has been considerable
research on the control problem of time-delay systems
[1]. Recently, for systems with uncertainty as well as
time-delay, a number of robust stabilization methods
have been proposed(2].

In general, the stabilization methods for time-delay
systems can be ‘Classified into two types: delayinde—
pendent stahilization[3]-{6] and delay—dependent stabili-
zation[7]-110]. The delay-independent stabilization provides
a controller which can stabilize the system‘ irrespective
of the size of the delay. On the other hand, the
delay-dependent stabilizing controller is concerned with
the size of the delay and usually gives the upper bound
of the delay such that the system can be stabilized by
the given controller. In general, the delay-dependent
results are considered less. conservative than the
delay-independent ones. However, existing delay—dependent
stabilization results are still too conservative in some
cases. Especially, when applied to the system which is
delayindependent stabilizable, existing delay—-dependent
controllers often guarantee the stability for only a small
size of the delay, far from providing infinity as the
upper bound of the delay.

In this paper, we present a new delay—dependent
robust confroller for uncertain time-delay systems which
can stahbilize the system for all admissible uncertainties.
We also propose an algorithm involving convex
optimization to compute a suboptimal upper bound of
the delay such that the system can be stabilized by the
controller, It is shown by numerical examples that the
proposed controller can be less conservative than the
existing results and it is even possible to capture the
delay—independent stabilizability of the system, which is
not the case for the previous results.
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This paper is organized as follows. In Section 0,
nominal time-delay systems without uncertainties are
considered first and stability analysis and stabilization
conditions are presented. In Section TH, robust stability
and stabilization results are developed for uncertain
time-delay systems and the algorithm to construct the
controller is proposed. Numerical examples are given in
Section IV and finally, Section V makes conclusions.

1I. Stability and stabilization of nominal systems
Let us consider a system ‘

MD=Ar(D+ A=+ Bu(d,
wW=¢(, te<[—h0] !
where x(D=R" is the state, «{)=R™ is the control,
2 >0 is the delay of the system, ¢#(-) is the initial
condition and A, A, and B are real constant matrices
with appropriate dimensions. We assume that the pair
(A+ Ay, B is stabilizable. We are interested in
designing a memoryless linear state-feedback controller

w(8) = Gx() (2)

where GeR™™ is a constant gain matrix. Our aim is
to develop a delay-dependent stabilization method which
provides the controller gain G as well as the upper
bound 7% of the delay such that the closed-loop system
is stable for any # satisfying 0<a<h.

The following lemma which was introduced by the
authors in [11, 12] for stability analysis of time-delay
systems plays an important role in obtaining the main
results of this paper.

Lemma 1 [11, 121 : Assume that o -)eR™ and

® - )=R™ are defined on the interval £2. Then, for

R X By

any positive definite matrix XeR and any matrix

MeR™™, the following holds:

o famon < [59]

[M)T(X (MTX+I)))((A{1(XM+ D][ggg] a0 (3)
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In the following theorem, we first consider the
stability analysis of the unforced nominal system (1)
with 2(#) =0.

Theorem 1 : (Stability) The unforced System> (1) with
w(H=0 is asymptotically stable for any time-delay 7%
satisfying 0<A<h, if there exist Z2>0, V>0, ¢ 0 and
M such that

Yy qZ+i41MT Y Yy
MAT+qZ gV —RVAT 0 <0 @)

YL - RAV =V D
where
Yy = ZA+A) +H(A+A)Z,

Y13 L= Z(A+A1)T, Y14 L= Al(MT+7LV).

proof : Choose a Lyapunov function as

W(x(t—a), a<[0, Bl)= Wi + W+ V¥ ®)
where
W= xT(HZ %0,
o= [ [ (A0 + Au(o- )Ty
{Ax(0) + A0 h)}dbds,
t
W= af xTOY 'x(6)dd
and ¥ 0.
Since it holds that
KD —slt—h) = [, K60 ©

= [ (Ax0) + Au(9— Wia,

the system (1) can be written as
() = (A+ADx(D)— )
¢
A [ {A@+Ax(6- )0

and thus the derivative of W, satisfies the relation

W= 27027 A+ A)KD -
2w (027 A; [ (Ax(@)+ Apxla— ) da.

Defining a( -) and & -) in (3) as, for all 9 &[¢— 4,1,

a(9) :

I

Ax(0)+Ax(6—h),
o) 1= A{Z7'x(D, |
and using Lemma 1 will supply
W < "D {(A+ADZ +Z7HA+AD
+hZ TAMTX A DX TN XM+ DATZ (D)
+2T(0Z " AMTX [ tih{Ax( 0)+ Ax(0— )}do
+ [ A O+ A6~ )X

{Ax(6) + Ax(6— h)}db.

Since W, and W; yield the relation

W = MAx()+Ap(t— Y'Y T HAx()+ Ap(t— )}
— [ (A0 +Axa- )Y

{Ax(0) + Ax(8— h)}do,
W= gxTOY (D —gxT(t— WY x(t— B,

choosing X :=Y ! and V:=Y/#k yield

W= W+ W+ W

A

TD{(A+ADZI+Z7 A+ AD

+Z 7 A(M + 1Y) VM RVATZ ()
LA + Ay b= )TV AR + Api— 1))
+2x7(HZ T AMTY THa(D) — (1= 1))

+ax (DY (D — axT(t— WY T alt— k)

Z 7 %(d
x(8) = x(t—h)

T[ (1,1) (1,2)][ Z %D
1,27 @, Dilx(D—x(t—m)]’

where
(1,1) : = ZA+ADT+(A+ADZ+

AMT+ BV VU M+ BNAT
+Z(A+A)TVTH A+ ADZ,
1,2) = AMTY ' +eZY - LA+ ATV A,
(2,2) 1= —qV "+ AT VAL

This quantity will be negative if it holds that

Yy Yy, ZA+ADT ‘

v, —eqv' —A{ <0,
where .
Yy = Z(A+ADT+H(A+ADZ

+ A (MT+ IV V M+ VAT,
Y= (AM+e2Y ",

Then, using the Lyapunov-Krasovskii stability theorem
[13] and Schur complement[14], we can conclude that
the unforced system (1) is asymptotically stable if the
condition (4) is satisfied This completes the proof. Il

Now, we extend Theorem 1 to a synthesis problem
to design a stabilizing state—feedback controller (2) for
the system (1).

Theorem 2 (Controller Design) : If there exist Z>0,
V>0, ¢>0, M and K such that

Y qZ*l‘thT Y Yy
MAT+qZ —hgV  —hVAT 0 0 ®

Y ~pA V. =V 0
Yo 0 0 -V
where
Yy = Z(A+A) +(A+A)Z+K'B"+BK,
Y= Z(A+A)T+K"BT,

Vi 1= AU+ 0V,
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then the system (1) with the control (8= KZ '%(}) is
asymptotically stable for any time-delay # satisfying
0<h< b,

proof © With the control (2), the closed-loop system
mafrix becomes A,=A+BG Hence, by applying

Theorem 1 to the closed-loop system, it is easy to
derive (8) with the change of a variable K=GZ W

In the next section, we extend the obtained stability
and stabilization results to the systems with norm-
bounded uncertainties.

I1II. Robust stability and stabilization of uncertain
systems
Consider the following uncertain time-delay systems

() = (A+DF(DE)(D +(A;+D,F\(DE))
x(t— )+ (B+DF(D Epu(d, 9

W(H=¢(h, t=[—h0],

where DeR™/, DieR"™", EeR*", E,eR"" E,=
R"™™ are real constant matrices with appropriate di—-
mensions and F(HeR™* and F(deR™™* are uncer-
tainties satisfying

IFAIl<T, (Dl <1. (10)

First, the following theorem gives robust stability
analysis of the unforced system (9) with «(d=0.

Theorem 3 (Robust Stability) : The unforced system
(9 with «()=0 is asymptotically stable for any
time-delay /7 satisfying 0<i<#h, if there exist Z>0,
V>0, @0, M and scalars e, ey, ..., ¢; such that
Yu Yy Yy Yy ZET zZET zE]  ZET
Yh Yy Yy 0 0 0 MET —%VET
Y YL Yy 000 0
Y, 0 0 -V 0 0 Yy 0
<0, (11
EZ 0 0 0 —el—el 0 0
EZ 0 0 0 —ey] —eyl 0 0
EZ EMT 0 YL 0 0 —ed —egl

EZ-hEV 0 0 0 0 —el —esl |
where

Yy = ZA+ADT+(A+ADZ+ e, DD+ e, D.DF,
Yi:= ZA+AD"+¢;DD™+ e, D\DT,

Yio = aZ+AMT, Yy =AM + 0V,

Yo = —hgV, Ys :=—V+e,DD"+e;D.DF,

Yu:= —wVAL, Yy :=W+wVEL

proof : Replace A, A;, and B in (4) with A-
DF()E, A+D Fi(DE, and B+ DF()E,, respectively
and multiply both sides of (4) by vectors x; for
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i=1,--,4. Next, define

b= F'OD™x, py:= F()DTx,,
@ = F{(OD{x1,  ay:= F{()D{x;.
Then we have the following condition
v [X ] axw 0 < 0 (12)

for all admissible F(# and Fy(#, where
vi= [x; %3 %3 %4 D1 o @1 g2]7

and the upper triangular entries of the symmetric
matrix X are

Xy = ZHA+A) +H(A+ADZ, X1y =aZ+ AMT,

l

Xpi= ZA+ADT, Xy =AM+ V),

X5 := ZE", X :=ZE', Xy :=ZET,

Xy:=ZE/, Xy:=—haV, Xgu:=-hVAL
Xy 1= MET, Xy :=—RVET,
Xgi=Xy:i=—1V, Xy :=(M+EVET

and all the other upper triangular entries are zero. We shall
now claim that the condition [[F(AII<1 can be replaced
with the condition that there exist e, ey, ey such that

e alal e e e o] oo

[elf 631] > 0. (14)

eyl e)d

To prove this claim, we first UDL-decompose the left
side of (14) into
[61] 63] I f][

0 I

gl 0

I fll] T
0 ggj

0 I

63] 82[

where g; and gy are positive because the UDL-
decomposition preserves matrix inertia. Now consider
the left side of (13).

[pﬂ el 63—7] m
ba| |ed e || py

If1 al 071 ANTTrp
[ ] [0 ng][() 1] [Pz]
=[P xl] ]fl el (DF(D 0 .
0 &F T (DF(H
[I fI] [ ]
D7x, [[fll][gll 0 ][1 fll]T DTy,
Dy LO T 0 &I[l0 I |pTy,
_ [ D% T[ el e31] DTy,
DTy,| lesl el || DTx,|
Similarly, [IF,(#1I<1 can be replaced with the condition
that there exist ey, es, ¢; such that

[41] T[ el 261][ q1] ([ Din T[ eld eel] Dim] (15
qof Lesd esl | @ Dixs| Lesl el Dix,
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[jgf zﬂ > 0. (16)
Now applying the S-procedurel14] to (12), (13), (14),
(15) and (16), we can obtain (11). |
Next, we extend the above result to the robust
controller synthesis problem in the following theorem.
Theorem 4 (Robust Controller Design) : If there exist Z>0,
V>0, ¢>0, M, K and scalars ey, ey, -, ¢; such that

(Yy Yp Y Yy Y5 Yy ZE{ ZE -
YII‘Z Yo Yu 0 0 0 MET —mVET

i Yh Yy O 0 0 0 0
Yoo 0 -V 0 0 Yy 0
<o, (A7
YL o0 0 0 —el—el 0 0
Y 0 0 0 —el —ed 0 0
EZ EMT 0 YL 0 0 —ed —el |
EZ —-hE,V 0 0 0 0 —ed —el
where
Yy = ZA+ADT+(A+A)Z+K'BT+ BK+
e,DDT+ ¢,D,DY,
Yy = ZA+A)T+KTBT+ ¢;DD"+ D, D],
Yy = gZ+AM, Yy =AM+ 1V),
Yy := ZET+KTELI, Y :=ZET+KTET,
Vo := —hqV, Yy =—V+e,DDT+e; DD,
Yy 1= —hVAL, Yy :=(M+hV)E].

then the system (9) with the control
w(D) = KZ %(d

is asymptotically stable for any time-delay # sat-
isfying 0<A<#.

proof : Applying the control (2) to the system (9), the
resulting closed-loop system matrix is given by
A.,=A+ BG+DF(H(E+ E,G). Then, following the similar
procedures as in the proof of Theorem 3 will provide
7. : ]

Now, we consider the problem of maximizing the
upper bound 7% guaranteed by the stabilizing controller
in Theorem 4. Since (17) is not a convex function of
the variables concerned, we cannot find in general the
global maximum of the problem. However, using the
similar procedure in [10], we can obtain the robust
stabilizing controller with suboptimal maximum upper
bound of the delay % as follows.

First, note that if we fix ¢, (17) has a form of a
generalized ejgenvalue pfoblern which can be efficiently
salved with recently developed nurnerical algorithmsi14].
Also, if we fix Z and V in (17), then it becomes again
a quasi-convex problem. Therefore,

we can propose the following algorithm to find the
controller with suboptimal maximal delay 7% :

Algorithm 1 :

1. Choose an initial ¢>0 arbitrary, for example, ¢=1.
Also, select a sufficiently small initial 7%>0 so that the
condition (17) with the initial ¢ and 7% is feasible.

2. For a given ¢, find the maximum 7% with incremental
search such that-(17) is feasible.

3. With fixed Z and V obtained in Step 2, search
incrementally the maximum 7% such that (17) is feasible.

4, Exit if the convergence of 7% is attained with a
prescribed precision. Otherwise, return to Step 2 with ¢
obtained in Step 3.

Note that the maximum % obtained in each step is
not smaller than that found in the previous step by the
above-mentioned quasi—convexity. The next section presents
numerical examples which compare the proposed con-—
troller with the previous results. ‘ '

IV. Numerical examples
Example 1 : Consider the uncertain time-delay system
(9) with system matrices

A:[—lz —03]’ Al:[—_o%aa 91]’ B:[é]’

and uncertainties

p=Di=[U ] B=Ei=[g 1], B=v.

The ahove system is actually delay-independent robust
stabilizable with the control (2), that is, the closed-loop
system is robust stabilizable for any £ satisfying
0<h<co. With the existing delaydependent stabilization
results[7]-[9], however, one can obtain very conservative
results. In fact, the largest upper bound of the delay
guaranteeing the closed-loop stability is only %=0.5557
in [8. On the other hand, our delay-dependent
stabilization condition (17) using Algorithm 1 gives
= oo from one iteration as shown in Table L

In this case, the values of the concerned variables
are

Z=[ 1.7192 ~0.0181] V=[ 5.5338 —1.6032]
—0.0181 2.4056 |’ —1.6032 20.7008 J°

o [—0.5534 0.1603 B ‘
L U I el O B L

K = [—1.2494 —0.6379], e, = 40.3884,
ey = 37.5939, e3=29.9079, ey = 41.8153,
es = 39.1049, e;=31.3899,

and a stabilizing controller is given by

wh) = KZ7'%(f) = [—0.7296 —0.27071x(d).

Table 1. Values of % in Algorithm 1 (Example 1).
Tteration number Step 2 Step 3

1 : 0.4500 o
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Table 2. Values of % in Algorithm 1 (Example 2).

Tteration number Step 2 Step 3
1 0.2000 0.3350
2 0.3600 0.3800
3 0.3850 0.3830
4 0.3902 0.3902

The next example is concerned with a system which
is not delay-independent stabilizable.
Example 2 @ Let us consider the uncertain time-delay

system (9) with system matrices
a=[g 9 4 5] B=(1]

and the same uncertainties as in the above example. In
this case, the delay-independent stabilizing controllers
[3]-[6] cannot be applied since the pair (A, B) is not
stabilizable. The largest time-delay attainable from the
known delay-dependent robust stabilization methods in
the literature is 7=0.3015 of [8]. As shown in Table.

2, our stabilization condition (17) using Algorithm 1
provides 7£=0.3902 after four iterations. Hence, we can
see that the robust stabilizing controller of this paper
can be less conservative than the existing results.

When £=0.3902,
variables are as follows.

z =[BT 6L o 10801 2HE)

the values of the concerned

276.1 325.6 239.5 1953.3
M= [25175{-232 _22151] K=[—236.9 —888.5],
g = 2.0335, e,=13162.3, ¢,=13785.8,
ey = 13729.5, e,=20433.8, e5=21856.9,
s = —11628.4,

In this case, a stahilizing state-feedback controller is
given by

W(f) = KZ7'x(9 = [0.1566 —2.86121x(2).

V. Conclusions

This paper addressed the problem of robust
stabilization of uncertain time-delay systems. We also
proposed an algorithm involving convex optimization to
construct a controller with a suboptimal upper bound of
the delay such that the system can be stabilized by the
controller for all admissible uncertainties. It was shown
by numerical examples that the proposed delay-dependent
stahilization condition can be less conservative than
previous results and even capture the delay-independent
stabilizability of the system, which is not possible for
the existing results. Extensions are expected to
input-delay systems and time-varying delay cases.
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