• Title/Summary/Keyword: Delay resource

Search Result 402, Processing Time 0.026 seconds

Probabilistic Analysis of System Failure (시스템 오류에 대한 확률적 분석)

  • Seong, Soon-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.648-654
    • /
    • 2010
  • Request operations and release operations occur repeatedly in resource allocation systems. The process requesting a resource acquires one by any priority-based mechanism, and returns the resource after some periods. In this system, resource failures lead to delay of resource allocation, or to termination of process holding the failed resource. To analyze this process effectively, this paper designs a probabilistic ACSR, a process algebra that extends ACSR with the probabilistic choice operation. The ability to express/analyze both request-release rates and failure-recovery rates is illustrated using probabilistic ACSR.

A Cloud-Edge Collaborative Computing Task Scheduling and Resource Allocation Algorithm for Energy Internet Environment

  • Song, Xin;Wang, Yue;Xie, Zhigang;Xia, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2282-2303
    • /
    • 2021
  • To solve the problems of heavy computing load and system transmission pressure in energy internet (EI), we establish a three-tier cloud-edge integrated EI network based on a cloud-edge collaborative computing to achieve the tradeoff between energy consumption and the system delay. A joint optimization problem for resource allocation and task offloading in the threetier cloud-edge integrated EI network is formulated to minimize the total system cost under the constraints of the task scheduling binary variables of each sensor node, the maximum uplink transmit power of each sensor node, the limited computation capability of the sensor node and the maximum computation resource of each edge server, which is a Mixed Integer Non-linear Programming (MINLP) problem. To solve the problem, we propose a joint task offloading and resource allocation algorithm (JTOARA), which is decomposed into three subproblems including the uplink transmission power allocation sub-problem, the computation resource allocation sub-problem, and the offloading scheme selection subproblem. Then, the power allocation of each sensor node is achieved by bisection search algorithm, which has a fast convergence. While the computation resource allocation is derived by line optimization method and convex optimization theory. Finally, to achieve the optimal task offloading, we propose a cloud-edge collaborative computation offloading schemes based on game theory and prove the existence of Nash Equilibrium. The simulation results demonstrate that our proposed algorithm can improve output performance as comparing with the conventional algorithms, and its performance is close to the that of the enumerative algorithm.

A Game Theoretic Cross-Layer Design for Resource Allocation in Heterogeneous OFDMA Networks

  • Zarakovitis, Charilaos C.;Nikolaros, Ilias G.;Ni, Qiang
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.1
    • /
    • pp.50-64
    • /
    • 2012
  • Quality of Service (QoS) and fairness considerations are undoubtedly essential parameters that need to be considered in the design of next generation scheduling algorithms. This work presents a novel game theoretic cross-layer design that offers optimal allocation of wireless resources to heterogeneous services in Orthogonal Frequency Division Multiple Access (OFDMA) networks. The method is based on the Axioms of the Symmetric Nash Bargaining Solution (S-NBS) concept used in cooperative game theory that provides Pareto optimality and symmetrically fair resource distribution. The proposed strategies are determined via convex optimization based on a new solution methodology and by the transformation of the subcarrier indexes by means of time-sharing. Simulation comparisons to relevant schemes in the literature show that the proposed design can be successfully employed to typify ideal resource allocation for next-generation broadband wireless systems by providing enhanced performance in terms of queuing delay, fairness provisions, QoS support, and power consumption, as well as a comparable total throughput.

  • PDF

Resource Allocation for QoS Provisioning in Overlaid Macrocell-Femtocell Networks

  • Lee, Jong-Chan;Lee, Moon-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.10
    • /
    • pp.53-59
    • /
    • 2015
  • In this paper we propose a resource management scheme which allocates hierarchical resources stepwise based on the users' QoS requirement of each service in the macro-femtocell overlaid LTE-Advanced network. Our proposed scheme adjusts the transmission rate to the minimum which guarantees the allowable minimum requirement of delay for each user service. In this way it minimizes the interference on the adjacent channels and it is able to increase the resource utilization efficiency. Simulation results show that our scheme provides better performances than the conventional one in respect of the outage probability and data transmission throughput.

Project Scheduling Problem with Resource Constraints Minimizing Cost (자원비용을 고려한 프로젝트 스케듈링에 관한 연구)

  • 서순근;최종덕
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.14 no.23
    • /
    • pp.19-25
    • /
    • 1991
  • In this paper, constrained resource project scheduling problems schedule project activities subject to finite constraints on the availability of non-storable resource. Further, resources are assumed to be available per period in constant amounts, and are also demanded by an activity in constant amounts throughout the duration of the activity. We describe formulation which minimizes the combined cost of fluctuations in resource demand and delay of project completion. Cost bounding procedures are augmented by dominance relationships presented as theorems. This paper presents algorithm for solving the problem. And numerical examples are presented. Sensitivity analysis to evaluate the effect of changes of cost efficients is conducted.

  • PDF

An Efficient Mode Selection Method for OFDM Based Multi-System Wireless Communication Systems (OFDM 기반 다중 무선 통신 환경에서의 효과적인 모드 선택 기법)

  • Park, Jong-Min;Kang, Min-Soo;Cho, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.2
    • /
    • pp.19-25
    • /
    • 2008
  • When there are numerous wireless communication systems co-existing in the limited available frequency resource, an unexpected time delay can be caused during the system switching. So, in order to reduce this time delay, a mode selection method is required. In this paper, we propose a mode selection method to minimize the time delay for multi-system wireless communication systems. For the sake of efficiency, the mode selection method is designed by analyzing the preamble characteristics of different standards. Instead of performing a full search, we propose the preamble partial search to reduce the time delay to a minimum. Simulated with Matlab in an additive white Gaussian noise(AWGN) environment with a signal to noise ratio(SNR) of 10dB and bit error rate(BER) of $10^{-6}$, we evaluated and showed the performance improvement gained by using our proposed mode selection method.

A Crossover Node Discovery and Local Repair Mechanism for Reducing the Signaling Delay of Resource Reservation on HMIPv6 Networks (HMIPv6 네트워크에서 자원예약 시그널링 지연을 줄이기 위한 크로스오버 노드 발견 및 지역적 자원 갱신 방안)

  • Byun, Hae-Sun;Lee, Mee-Jeong
    • The KIPS Transactions:PartC
    • /
    • v.15C no.1
    • /
    • pp.37-44
    • /
    • 2008
  • In order to minimize the signaling delay for a resource reservation on the new routing path after the handover of Mobile Node(MN) is completed, it is important to discover the crossover node where the old and new routing paths meet. With the 크로스오버 노드 being found, the signaling messages only need to be transferred on the changed part of the end-to-end path. The crossover node is generally discovered using the end-to-end Session ID(SID) of the established session between MN and Correspondent Node(CN). However, in the Hierarchical Mobile IPv6(HMIPv6) network, if the Mobile Anchor Point (MAP) reserves the resource by aggregate with the Home Agent(HA), the crossover node discovery cannot be performed in the general way since the aggregate SID that has established between the previous MAP and HA is different from the that of the current MAP and HA after MN's handover. In this paper, we propose a mechanism to discover the crossover node within the tunnel between the MAP and the HA in an HMIPv6 network, assuming that the Next Steps in Signaling(NSIS) is deployed for the resource reservation and the aggregate reservation is applied over the MAP and HA tunnel. The local repair required for the change of path is performed upon the crossover node discovery. The simulation results show that the proposed scheme reduces the signaling delay for the reservation and outperforms the existing scheme with respect to throughput during the handover.

Resource Reallocation Algorithm for Layered Video Multicast (계층적 비디오 멀티캐스트를 위한 자원 재할당 알고리즘)

  • Yun, Jiun;Park, Dong Chan;Hwang, Sung Sue;Kim, Min Ki;Kim, Suk Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.5
    • /
    • pp.293-301
    • /
    • 2014
  • It has been grown interests ot the convergence services about broadcasting and multicasting services such as Mobile IPTV. It needs the efficient scheduling and resource allocation algorithm because video contents have the large data. This paper proposes the resource allocation algorithm for the layered-encoded video coding in the multicasting services. Existing approaches only deal with the utility maximization in the current video frames. However, these algorithms have a problem for the Quality of Services(QoS) if the user's channel states are not good. We apply the delay constraint and find to maximize the utility values using the current content's frames and already assigned content's frames within the constraint periods. The performance of the proposed algorithm is evaluated by the higher layer transmission rates compared the existing algorithm and significantly improved for the QoS.

Design and Implementation of a Sequential Polynomial Basis Multiplier over GF(2m)

  • Mathe, Sudha Ellison;Boppana, Lakshmi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2680-2700
    • /
    • 2017
  • Finite field arithmetic over GF($2^m$) is used in a variety of applications such as cryptography, coding theory, computer algebra. It is mainly used in various cryptographic algorithms such as the Elliptic Curve Cryptography (ECC), Advanced Encryption Standard (AES), Twofish etc. The multiplication in a finite field is considered as highly complex and resource consuming operation in such applications. Many algorithms and architectures are proposed in the literature to obtain efficient multiplication operation in both hardware and software. In this paper, a modified serial multiplication algorithm with interleaved modular reduction is proposed, which allows for an efficient realization of a sequential polynomial basis multiplier. The proposed sequential multiplier supports multiplication of any two arbitrary finite field elements over GF($2^m$) for generic irreducible polynomials, therefore made versatile. Estimation of area and time complexities of the proposed sequential multiplier is performed and comparison with existing sequential multipliers is presented. The proposed sequential multiplier achieves 50% reduction in area-delay product over the best of existing sequential multipliers for m = 163, indicating an efficient design in terms of both area and delay. The Application Specific Integrated Circuit (ASIC) and the Field Programmable Gate Array (FPGA) implementation results indicate a significantly less power-delay and area-delay products of the proposed sequential multiplier over existing multipliers.

Adaptive Duty Cycling MAC Protocols Using Closed-Loop Control for Wireless Sensor Networks

  • Kim, Jae-Hyun;Kim, Seog-Gyu;Lee, Jai-Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.105-122
    • /
    • 2011
  • The fundamental design goal of wireless sensor MAC protocols is to minimize unnecessary power consumption of the sensor nodes, because of its stringent resource constraints and ultra-power limitation. In existing MAC protocols in wireless sensor networks (WSNs), duty cycling, in which each node periodically cycles between the active and sleep states, has been introduced to reduce unnecessary energy consumption. Existing MAC schemes, however, use a fixed duty cycling regardless of multi-hop communication and traffic fluctuations. On the other hand, there is a tradeoff between energy efficiency and delay caused by duty cycling mechanism in multi-hop communication and existing MAC approaches only tend to improve energy efficiency with sacrificing data delivery delay. In this paper, we propose two different MAC schemes (ADS-MAC and ELA-MAC) using closed-loop control in order to achieve both energy savings and minimal delay in wireless sensor networks. The two proposed MAC schemes, which are synchronous and asynchronous approaches, respectively, utilize an adaptive timer and a successive preload frame with closed-loop control for adaptive duty cycling. As a result, the analysis and the simulation results show that our schemes outperform existing schemes in terms of energy efficiency and delivery delay.