• Title/Summary/Keyword: Delay error

Search Result 1,074, Processing Time 0.029 seconds

Extending Ionospheric Correction Coverage Area By Using A Neural Network Method

  • Kim, Mingyu;Kim, Jeongrae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.64-72
    • /
    • 2016
  • The coverage area of a GNSS regional ionospheric delay model is mainly determined by the distribution of GNSS ground monitoring stations. Extrapolation of the ionospheric model data can extend the coverage area. An extrapolation algorithm, which combines observed ionospheric delay with the environmental parameters, is proposed. Neural network and least square regression algorithms are developed to utilize the combined input data. The bi-harmonic spline method is also tested for comparison. The IGS ionosphere map data is used to simulate the delays and to compute the extrapolation error statistics. The neural network method outperforms the other methods and demonstrates a high extrapolation accuracy. In order to determine the directional characteristics, the estimation error is classified into four direction components. The South extrapolation area yields the largest estimation error followed by North area, which yields the second-largest error.

Detection algorithm of ionospheric delay anomaly based on multi-reference stations for ionospheric scintillation

  • Yoo, Yun-Ja;Cho, Deuk-Jae;Park, Sang-Hyun;Shin, Mi-Young
    • Journal of Navigation and Port Research
    • /
    • v.35 no.9
    • /
    • pp.701-706
    • /
    • 2011
  • Radio waves including GPS signals, various TV communications, and radio broadcasting can be disturbed by a strong solar storm, which may occur due to solar flares and produce an ionospheric delay anomaly in the ionosphere according to the change of total electron content. Electron density irregularities can cause deep signal fading, frequently known as ionospheric scintillation, which can result in the positioning error using GPS signal. This paper proposes a detection algorithm for the ionosphere delay anomaly during a solar storm by using multi-reference stations. Different TEC grid which has irregular electron density was applied above one reference station. Then the ionospheric delay in zenith direction applied different TEC will show comparatively large ionospheric zenith delay due to the electron irregularity. The ionospheric slant delay applied an elevation angle at reference station was analyzed to detect the ionospheric delay anomaly that can result in positioning error. A simulation test was implemented and a proposed detection algorithm using data logged by four reference stations was applied to detect the ionospheric delay anomaly compared to a criterion.

On the Optimal Cyclic Delay Value in Cyclic Delay Diversity (순환 지연 다이버시티 기법에서의 최적의 순환 지연 값)

  • Kim, Yong-June;Rim, Min-Joong;Jeong, Byung-Jang;Noh, Tae-Gyun;Kim, Ho-Yun;Lim, Dae-Woon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.643-651
    • /
    • 2008
  • In this paper, we propose a method to determine the optimal cyclic delay value of cyclic delay diversity(CDD) in orthogonal frequency division multiplexing(OFDM) systems. As the cyclic delay value increases, we can get signal to interference and noise ratio(SINR) gain by diversity effect, while SINR loss increases because of channel estimation errors. If the optimal delay value obtained by the proposed method is applied to CDD scheme, we can minimize the required SINR for a given FER(frame error rate) under the above mentioned trade-off.

Design of an iterative learning controller for a class of linear dynamic systems with time-delay (시간 지연이 있는 선형 시스템에 대한 반복 학습 제어기의 설계)

  • Park, Kwang-Hyun;Bien, Zeung-Nam;Hwang, Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.295-300
    • /
    • 1998
  • In this paper, we point out the possibility of the divergence of control input caused by the estimation error of delay-time when general iterative learning algorithms are applied to a class of linear dynamic systems with time-delay in which delay-time is not exactly measurable, and then propose a new type of iterative learning algorithm in order to solve this problem. To resolve the uncertainty of delay-time, we propose an algorithm using holding mechanism which has been used in digital control system and/or discrete-time control system. The control input is held as constant value during the time interval of which size is that of the delay-time uncertainty. The output of the system tracks a given desired trajectory at discrete points which are spaced auording to the size of uncertainty of delay-time with the robust property for estimation error of delay-time. Several numerical examples are given to illustrate the effeciency of the proposed algorithm.

  • PDF

A Study on the Active Noise Control Algorithm for Rreducing the Computation Rime (계산속도를 증가시키기 위한 능동소음제어 알고리즘에 대한 연구)

  • 박광수;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.699-703
    • /
    • 1993
  • When the error path can be modeled as a pure delay, an adaptive algorithm for slowly time varying system is proposed to minimize the sound pressure level. This algorithm makes it possible to use the fittered-x LMS algorithm with on-line delay modeling of the error path. Another simple adaptive algorithm for pure tone noise is proposed which eliminates the cross term in the multiple error filtered-x LMS algorithm.

  • PDF

A Design of Model-Following Time Delay Controller with Modified Error Feedback Controller (오차피드백 제어입력이 개선된 모델추종 시간지연제어기 설계)

  • Park, Byung-Suk;Yoon, Ji-Sup;Kang, E-Sok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.176-184
    • /
    • 2000
  • TDC(Time Delay Control) deals with the time-varying system parameters, unknown dynamics and unexpected disturbances using time delay. TDC can be divided into two separate parts: an auxiliary controller and a servo controller. The two controllers can be designed independently. The auxiliary controller is used to reduce sensitivity to parameter variations, nonlinear effects, and other disturbances. The servo controller is to reduce the error between the desired command and output. We propose the model-following time delay controller with modified error feedback controller. This was applied to follow the desired reference model for the uncertain time-varying overhead crane. The model generates the damped-out swinging motion trajectory to suppress the swinging motion caused by the acceleration and the deceleration of crane transportation. The control performance was evaluated through simulations. The theoretical results indicate that this control method shows excellent performance to an overhead crane with the uncertain time-varying parameters.

  • PDF

Blind Equalization with Arbitrary Decision Delay using One-Step Forward Prediction Error Filters (One-step 순방향 추정 오차 필터를 이용한 임의의 결정지연을 갖는 블라인드 등화)

  • Ahn, Kyung-seung;Baik, Heung-ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2C
    • /
    • pp.181-192
    • /
    • 2003
  • Blind equalization of communication channel is important because it does not need training signal, nor does it require a priori channel information. So, we can increase the bandwidth efficiency. The linear prediction error method is perhaps the most attractive in practice due to the insensitive to blind channel equalizer length mismatch as well as for its simple adaptive implementation. Unfortunately, the previous one-step prediction error method is known to be limited in arbitrary decision delay. In this paper, we propose method for fractionally spaced blind equalizer with arbitrary decision delay using one-step forward prediction error filter from second-order statistics of the received signals for SIMO channel. Our algorithm utilizes the forward prediction error as training signal and computes the best decision delay from all possible decision delay. Simulation results are presented to demonstrate the performance of our proposed algorithm.

Design and Implementation of a Linearizer Using the Feedforward Loop without Delay Lines (지연 선로가 없는 Feedforward Loop를 이용한 선형화기의 설계 및 제작)

  • 정승환;조경준;김완종;안창엽;김종헌
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.1
    • /
    • pp.116-123
    • /
    • 2000
  • This paper presents a linearizer using the feedforward loop which can be applied to PCS base-station applications. This linearizer used a IM amplifier and an auxiliary amplifier in order to remove delay lines used in the predistortor using the feedforward technique. The delay line in error loop is changed by the main power amplifier(PA) and the error amplifier is utilized to amplify the error signal which fed to the output of main amplifier. The linearizer was simulated by HP ADS ver 1.1 and fabricated on GML 1000 with thickness of 0.8 mm and dielectric constant of 3.2. Two-tone signals at 1.85 GHz and 1.851 GHz with -7dBm/tone from synthesizers are injected into the main PA. The main PA with a 27 dB gain and a $P_{1dB}$ of 29 dBm(two-tone) was utilized. The reduction of intermodulation distortion (IMD) is around 17 dB.

  • PDF

Integrated Navigation System Design of Electro-Optical Tracking System with Time-delay and Scale Factor Error Compensation

  • Son, Jae Hoon;Choi, Woojin;Oh, Sang Heon;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.71-81
    • /
    • 2022
  • In order for electro-optical tracking system (EOTS) to have accurate target coordinate, accurate navigation results are required. If an integrated navigation system is configured using an inertial measurement unit (IMU) of EOTS and the vehicle's navigation results, navigation results with high rate can be obtained. Due to the time-delay of the navigation results of the vehicle in the EOTS and scale factor errors of the EOTS IMU in high-speed and high dynamic operation of the vehicle, it is much more difficult to have accurate navigation results. In this paper, an integrated navigation system of EOTS which compensates time-delay and scale factor error is proposed. The proposed integrated navigation system consists of vehicle's navigation system which provides time-delayed navigation results, an EOTS IMU, an inertial navigation system (INS), an augmented Kalman filter and integration Kalman filter. The augmented Kalman filter outputs navigation results, in which the time-delay of the vehicle's navigation results is compensated. The integration Kalman filter estimates position, velocity, attitude error of the EOTS INS and accelerometer bias, accelerometer scale factor error, gyro bias and gyro scale factor error from the difference between the output of the augmented Kalman filter and the navigation result of the EOTS INS. In order to check performance of the proposed integrated navigation system, simulations for output data of a measurement generator and land vehicle experiments were performed. The performance evaluation results show that the proposed integrated navigation system provides more accurate navigation results.

Test Results of WADGPS System using Satellite-based Ionospheric Delay Model for Improving Positioning Accuracy

  • So, Hyoungmin;Jang, Jaegyu;Lee, Kihoon;Song, Kiwon;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.4
    • /
    • pp.213-219
    • /
    • 2016
  • Most existing studies on the wide-area differential global positioning system (WADGPS) employed a grid ionosphere model for error correction in the ionospheric delay. The present study discusses the application of satellite-based ionospheric delay model that provides an error model as a plane function with regard to individual satellites in order to improve accuracy in the WADGPS. The satellite-based ionospheric delay model was developed by Stanford University in the USA. In the present study, the algorithm in the model is applied to the WADGPS system and experimental results using measurements in the Korean Peninsula are presented. Around 1 m horizontal accuracy was exhibited in the existing planar fit grid model but when the satellite-based model was applied, correction performance within 1 m was verified.