• Title/Summary/Keyword: Delay bound

Search Result 194, Processing Time 0.026 seconds

End-to-end Delay Guarantee in IEEE 802.1 TSN with Non-work conserving scheduler (비작업보존 스케줄러를 갖는 IEEE 802.1 TSN에서 단대단 지연시간 보장)

  • Joung, Jinoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.121-126
    • /
    • 2018
  • IEEE 802.1 TSN TG is developing standards for end-to-end delay bounds and zero packet loss based on Ethernet technology. We focus on packet forwarding techniques. TSN packet forwarding techniques can be classified into Synchronous and Asynchronous framework. Synchronous approach allocates fixed time period for a class, yet is complex for large networks. Asynchronous approach provides delay guarantee by regulator-scheduler pair, yet is unnecessarily complex, too. We propose network components for TSN Asynchronous architecture, which remove the complexity of maintaining flow state for regulation decisions. Despite such a simplicity, the proposed architecture satisfies the TSN's delay requirements provided the limited high priority traffic's maximum packet length.

Transmitter Beamforming and Artificial Noise with Delayed Feedback: Secrecy Rate and Power Allocation

  • Yang, Yunchuan;Wang, Wenbo;Zhao, Hui;Zhao, Long
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.374-384
    • /
    • 2012
  • Utilizing artificial noise (AN) is a good means to guarantee security against eavesdropping in a multi-inputmulti-output system, where the AN is designed to lie in the null space of the legitimate receiver's channel direction information (CDI). However, imperfect CDI will lead to noise leakage at the legitimate receiver and cause significant loss in the achievable secrecy rate. In this paper, we consider a delayed feedback system, and investigate the impact of delayed CDI on security by using a transmit beamforming and AN scheme. By exploiting the Gauss-Markov fading spectrum to model the feedback delay, we derive a closed-form expression of the upper bound on the secrecy rate loss, where $N_t$ = 2. For a moderate number of antennas where $N_t$ > 2, two special cases, based on the first-order statistics of the noise leakage and large number theory, are explored to approximate the respective upper bounds. In addition, to maintain a constant signal-to-interferenceplus-noise ratio degradation, we analyze the corresponding delay constraint. Furthermore, based on the obtained closed-form expression of the lower bound on the achievable secrecy rate, we investigate an optimal power allocation strategy between the information signal and the AN. The analytical and numerical results obtained based on first-order statistics can be regarded as a good approximation of the capacity that can be achieved at the legitimate receiver with a certain number of antennas, $N_t$. In addition, for a given delay, we show that optimal power allocation is not sensitive to the number of antennas in a high signal-to-noise ratio regime. The simulation results further indicate that the achievable secrecy rate with optimal power allocation can be improved significantly as compared to that with fixed power allocation. In addition, as the delay increases, the ratio of power allocated to the AN should be decreased to reduce the secrecy rate degradation.

An Admission Control for End-to-end Performance Guarantee in Next Generation Networks (Next Generation Networks에서의 단대단 성능 보장형 인입제어)

  • Joung, Jin-Oo;Choi, Jeong-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8B
    • /
    • pp.1141-1149
    • /
    • 2010
  • Next Generation Networks (NGN) is defined as IP-based networks with multi-services and with multi-access networks. A variety of services and access technologies are co-existed within NGN. Therefore there are numerous transport technologies such as Differentiated Services (DiffServ), Multi-protocol Label Switching (MPLS), and the combined transport technologies. In such an environment, flows are aggregated and de-aggregated multiple times in their end-to-end paths. In this research, a method for calculating end-to-end delay bound for such a flow, provided that the information exchanged among networks regarding flow aggregates, especially the maximum burst size of a flow aggregate entering a network. We suggest an admission control mechanism that can decide whether the requested performance for a flow can be met. We further verify the suggested calculation and admission algorithm with a few realistic scenarios.

QoS-based P2P Streaming Protocol (QoS 기반이 P2P 스트리밍 프로토콜)

  • Park, Seung-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1571-1579
    • /
    • 2009
  • This paper proposes a P2P(Peer-to-Peer) streaming protocol which allows various QoS(Qualify of Service) requirements of video streaming to be supported for various personal IPTV applications in ubiquitous Internet environments. The proposed P2P streaming protocol takes fairly short startup delay, guarantees end-to-end delay bound and bandwidth requirements, and supports reliability level of video streaming for an IPTV application. The QoS-based P2P streaming protocol can properly use not only the advantages of scalability, availability, and ubiquity of P2P streaming but also complement its disadvantages of performance and reliability so that various types of personal IPTV applications can be properly implemented in the existing broadband Internet environments.

Stability Condition for Discrete Interval Time-varying System with Time-varying Delay Time (시변 지연시간을 갖는 이산 구간 시변 시스템의 안정조건)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.475-481
    • /
    • 2016
  • In this paper, the new stability condition of linear discrete interval time-varying systems with time-varying delay time is proposed. The considered system has interval time-varying system matrices for both non-delayed and delayed states with time-varying delay time within given interval values. The proposed condition is derived by using Lyapunov stability theory and expressed by very simple inequality. The restricted stability issue on the interval time-invariant system is expanded to interval time-varying system and a powerful stability condition which is more comprehensive than the previous is proposed. As a results, it is possible to avoid the introduction of complex linear matrix inequality (LMI) or upper solution bound of Lyapunov equation in the derivation of sufficient condition. Also, it is shown that the proposed result can include the many existing stability conditions in the previous literatures. A numerical example in the pe revious works is modified to more general interval system and shows the expandability and effectiveness of the new stability condition.

Real-Time Traffic Connection Admission Control of Queue Service Discipline (큐 서비스 방식에서 실시간 트래픽 연결 수락 제어)

  • 나하선;나상동
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.5C
    • /
    • pp.445-453
    • /
    • 2002
  • We propose a cell-multiplexing scheme for the real-time communication service in ATM network and a new service discipline guarantee end-to-end delay based on pseudo-isochronous cell switching. The proposed scheme consists of two level frame hierarchy, upper and lower frame, which is used to assign the bandwidth and to guarantee the requested delay bound, respectively. Since the proposed algorithm employs two level frame hierarchy, it can overcome the coupling problem which is inherent to the framing strategy. The proposed scheme consists of two components, traffic controller and scheduller, as the imput traffic description model and regulates the input traffic specification. The function of the traffic controller is to shape real-time traffic to have the same input pattern at every switch along the path. The end-to-end delay is bounded by the scheduller which can limit the delay variation without using per-session jitter controllers, and therefore it can decrease the required buffer size. The proposed algorithm can support the QoS's of non-real time traffic as well as those of real time traffic

An Intra-path Load Balancing Method based on both the Bottleneck State of Path and the Bandwidth Avaliability of Link (경로 병목상태와 링크 대역폭 가용도 기반 경로 부하 밸런싱 방법)

  • Kim, Tae-Joon
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.3
    • /
    • pp.409-418
    • /
    • 2009
  • Providing Quality-of-Service (QoS) guarantee requires for each router on the path of a traffic flow not to violate the flow's delay budget allocated to itself. Since the amount of load being offered to the router is determined by the budget, some imbalance in load among routers on the path may be alleviated by means of adjusting the budget. The equal allocation applied to the resource reservation protocol (RSVP) is simple to implement, but it has the drawback of a poor resource utilization. A load balancing method in which the delay budget being allocated to a router depends on its load state was developed to improve the drawback, but it's too complex to apply to the RSVP. This paper proposes an intra-path load balancing method not only applicable to the RSVP but also more effective in improving the drawback. The proposed method first partitions the end-to-end delay bound of a flow to routers by the RSVP and then let them adjust their budgets according to both the bottleneck state of the path and their links' bandwidth availabilities. The results of the simulation applying the proposed method to an evaluation network showed that the proposed method may provide the gain of 4 ${\sim}$ 17 % compared to that in the legacy one in terms of the number of maximally admittable flows.

  • PDF

Design of Network-adaptive Transmission Architecture for Guaranteeing the Quality of Virtualization Service (가상화 서비스의 QoS 보장을 위한 네트워크 적응적인 전송 구조 설계)

  • Kim, Sujeong;Ju, Kwangsung;Chung, Kwangsue
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1618-1626
    • /
    • 2013
  • Virtualization service processes all operation including the data creation, storing, and disposal in a server and transmits processed data as the streaming media form. Therefore, client can use the same environment as the traditional desktop environment without considering the type of device. Virtualization service should consider not only the video quality but also the delay bounds and continuity of video playback for improving the user perceived Quality of Service(QoS) of streaming service. In this paper, we propose a network-adaptive transmission architecture that focuses on guaranteeing QoS requirements for virtualization service. In order to provide those, the proposed architecture have the transmission rate adaptation function based on available bandwidth and the content bit-rate control function based on sender buffer state. Through each function, proposed architecture guarantee the delay bounds and continuity of virtualization contents playback. The simulation results show that proposed network-adaptive transmission architecture provides a improve performance of throughput and transmission delay.

Change of Physicochemical Properties and Hesperidin Contents of Jeju Processing Citrus Fruits with the Harvest Date (수확시기별 제주산 가공용 감귤의 이화학적 특성과 hesperidin함량)

  • Yang, Jiwon;Choi, Il Sook;Lee, Jeong Hee;Cho, Chang-Won;Kim, Sung Soo
    • Food Science and Preservation
    • /
    • v.19 no.5
    • /
    • pp.652-658
    • /
    • 2012
  • This study, the changes in physicochemical properties and hesperidin content of Jeju-processed citrus fruits according to the harvest date were evaluate. The soluble-solid content, pH, and soluble solid-acid ratios gradually increased, but titratable acidity slightly decreased with a delay in the harvest date. The color index, lightness, yellowness, and turbidity slightly decreased whereas the redness slightly increased with a delay in the harvest date. The hesperidin content slightly decreased with a delay in the harvest date. Hesperidin, which is the major cause of juice cloudiness, decreased with a delay in the harvest date. These results suggest that later-harvested fruit juice is bound to be less cloudy.

Stability Condition for Discrete Interval Time-Varying System with Unstructured Uncertainty and Time-Varying Delay Time (비구조화된 불확실성과 시변 지연시간을 갖는 이산 시변 구간 시스템의 안정조건)

  • Hyung-seok Han
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.504-509
    • /
    • 2022
  • In this paper, we deal with the stability condition of linear time-varying interval discrete systems with time-varying delays and unstructured uncertainty. For the time-varying interval discrete system which has interval matrix as its system matrices, time-varying delay time within some interval value and unstructured uncertainty which can include non-linearity and be expressed by only its magnitude, the stability condition is proposed. Compared with the previous result derived by using a upper bound solution of the Lyapunov equation, the new result is derived by the form of simple inequality based on Lyapunov stability condition and has the advantage of being more effective in checking stability. Furthermore, the proposed condition is very comprehensive, powerful and inclusive the previously published conditions of various linear discrete systems, and can be expressed by the terms of magnitudes of the time-varying delay time and uncertainty, and bounds of interval matrices. The superiority of the new condition is shown in the derivation, and the usefulness and advantage of the proposed condition are examined through numerical example.