• Title/Summary/Keyword: Delaminations

Search Result 66, Processing Time 0.031 seconds

Delamination Detection of Retrofitted Concrete Using Horn Antenna (Horn Antenna를 이용한 콘크리트 보강재의 박리탐사 실험)

  • Rhim, Hong-Chul;Cho, Young-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.409-416
    • /
    • 2007
  • In accordance with the increased usage of reinforcing materials such as carbon fibers and glass fibers, delamination detection between concrete and the reinforcing material is needed as such delaminations may be a major cause for strength reduction or failure of a structure. In this work, 15 GHz center frequency with 10 GHz band width horn antenna was used to detect delamination between concrete and carbon fibers or glass fibers. The specimens measured $600\;(length)\;{\times}\;600\;(width)\;{\times}\;100\;(thickness)\;mm$, and glass fibers and carbon fibers with a thickness of 1.5 mm were attached on the specimens' surfaces using epoxy. In addition, artificial delaminations of size $50\;(length)\;{\times}\;50\;(width)\;mm$ were placed in the middle of the specimen with thickness of 2, 4, 6 mm respectively together with a 2 mm delamination projecting upwards from the surface of the concrete. Therefore a total of 8 specimens were used, 4 specimens for glass fiber reinforced concrete and 4 for carbon fiber reinforced concrete, containing delaminations as described above. The experiment results were derived by using the difference of area under the curved graph. According to experimental results artifical delaminations were identified in both fiber reinforced and carbon reinforced specimens and these results could contribute to further development of delamination detection technology.

Evaluation of Free-Edge Delamination in Composite Laminates (복합재 적층판의 자유단 층간분리의 평가)

  • 김인권;공창덕;방조혁
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2001
  • A simplified method for determining the three mode(I, II, III) components of the strain energy release rate of free-edge delaminations in composite laminates is proposed. The interlaminar stresses are evaluated using the interface moment and the interface shear forces which are obtained from the equilibrium equations at the interface between the adjacent layers. Deformation of an edge-delaminated laminate is analysed by using a generalized quasi-three dimensional classical laminated plate theory. The analysis provides closed-form expression for the three components of the strain energy release rate. The analyses are performed for composite laminates subjected to uniaxial tension, with free-edge delaminations located symmetrically and asymmetrically with respect to the laminate midplane. The analysis results agreed with a finite element solution using the virtual crack closure technique.

  • PDF

Quantitative Evaluation of Delamination Inside of Composite Materials by ESPI (ESPI를 이용한 복합재료 박리결함의 정량평가)

  • Kim, Koung-Suk;Yang, Kwang-Young;Kang, Ki-Soo;Ji, Chang-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.3
    • /
    • pp.246-252
    • /
    • 2004
  • Electronic speckle pattern interferometry (ESPI) for quantitative evaluation of delaminations inside of a composite material plate is described. Delaminations caused by the impact on composite materials are difficult to detect visual inspection and ultrasonic testing due to non-homeogenous structure. This paper proposes the quantitative evaluation technique of the defects made in the composite plates by impact load. Artificial defects are introduced inside of the composite plate for the development of a reliable ESPI inspection technique. Real defects produced by impact tester are inspected and compared with the results of visual inspection which shows a good agreement within 5% error.

Thermo-Mechanical Interaction of Flip Chip Package Constituents (플립칩 패키지 구성 요소의 열-기계적 특성 평가)

  • 박주혁;정재동
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.183-190
    • /
    • 2003
  • Major device failures such as die cracking, interfacial delamination and warpage in flip chip packages are due to excessive heat and thermal gradients- There have been significant researches toward understanding the thermal performance of electronic packages, but the majority of these studies do not take into account the combined effects of thermo-mechanical interactions of the different package constituents. This paper investigates the thermo-mechanical performance of flip chip package constituents based on the finite element method with thermo-mechanically coupled elements. Delaminations with different lengths between the silicon die and underfill resin interfaces were introduced to simulate the defects induced during the assembly processes. The temperature gradient fields and the corresponding stress distributions were analyzed and the results were compared with isothermal case. Parametric studies have been conducted with varying thermal conductivities of the package components, substrate board configurations. Compared with the uniform temperature distribution model, the model considering the temperature gradients provided more accurate stress profiles in the solder interconnections and underfill fillet. The packages with prescribed delaminations resulted in significant changes in stress in the solder. From the parametric study, the coefficients of thermal expansion and the package configurations played significant roles in determining the stress level over the entire package, although they showed little influence on stresses profile within the individual components. These observations have been implemented to the multi-board layer chip scale packages (CSP), and its results are discussed.

A Study on Detecting Steel Bars Embedded inside Concrete using Ground Penetrating Radar (레이더를 이용한 콘크리트 내 철근탐사에 관한 기초연구)

  • 이지훈;임홍철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.785-790
    • /
    • 1998
  • Ground Penetrating Radar (GPR) is a powerful tool with a wide range of applications in the nondestructive testing of concrete. It's useful for the detection of steel bars and delaminations embedded inside concrete, nondestructively. The purpose of this study is to detect a reinforced bar embedded inside concrete and to determine the range of application using GPR. A concrete specimen used for this study has a 25mm diameter steel bar and it's dimensions are 1,000 mm (L)× 1,000 mm(W)×280 mm(D). The advantages and limitations of GPR in these applications for concrete are also discussed.

  • PDF

Effects of the buried lamellar tears on the mechanical strength in the welded T joints (T형상용접 이음에서 매몰된 라멜라균열이 용접부의 기계적 강도에 미치는 영향)

  • 고진현
    • Journal of Welding and Joining
    • /
    • v.6 no.4
    • /
    • pp.44-53
    • /
    • 1988
  • The mechanical strengths of buried lamellar tears located near the weld toe in the welded tee joints were evaluated in terms of the loss of load carrying capacity as a function of tear area. In static loading, the load carrying capacity was significantly reduced when tear intercepted over 10% of the cross-sectional area of the welded joints. However, the welded joints containing buried tears still failed at stresses over the yield strength of the base metal in the through-thickness direction in spite of the presence of tears up to 20-25% of the area. Fatigue strength of welded joints containing tears markedly reduced with increasing tear areas. Lehigh lamellar tearing test used in this study to produce speicmens was described in detail. The load carrying cpapacity in static loading was influenced by the reduction of supporting area whereas that in fatigue loading was influenced by the stress-concentration effects of lamellar tears and the reduction of supporting area. In bend tests, the pre-existing lamellar tears always grew up toward the weld toe. However, in fatigue loading, cracks grew up and down simultaneously form both the weld toe and the top of lamellar tears because of stress concentration. In fatigue loading, delaminations and decohesion of inclusion/matrix interface generated in multipass welds provided crack propagation paths and enhanced crack propagation because the tips of delaminations and deconhesios acted as stress raisers.

  • PDF

A Study on the Impact-Induced Damage in CFRP Angle-ply Laminates (CFRP 사교적층판의 충격손상에 관한 연구)

  • 배태성;입야영;양동률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.237-247
    • /
    • 1993
  • Carbon fiber reinforced plastics(CFRP) have gained increased application in aerospace structures because of their specific strength and stiffness, but are sensitive to impact-induced damage. An experimental investigation was carried out to evaluate the impact resistance of CFRP according to the ply angle. The specimens of angle ply laminate composites were employed with [0.deg. $_{6}$/ .deg.$_{10}$/0.deg.$_{6}$], in which 6 kinds of ply angle such as .deg.=15.deg., 30.deg., 45.deg., 60.deg., 75.deg. and 90.deg. were selected. The impact tests were conducted using the air gun type impact testing machine by steel balls of diameter of 5 mm and 10 mm, and impact-induced damages were evaluated under same impact speed of V=60m/s. The impact damaged zones were observed through a scanning acoustic microscope (SAM). The obtained results were summarized as follows: (1) Delaminations on the interfacial boundaries showed th directional characteristics to the fiber directions. The delamination area on the impact side (interface A) was considerably smaller compared to that of the opposite side (interface B). (2) Cracks corresponding to other delaminations than those mentioned in SAM photographs were also seen on the impact damaged zone. (3) The delamination patterns were affected by the ply-angle, the dimensions of the specimen, and the boundary conditions. (4) The impact damaged zone showed zone showed the delamination on the interfacial boundaries, transverse shear cracks of the surface layer, and bending cracks of the bottom layer.r.r.r.

Reconstruction and Deconvolution of X-Ray Backscatter Data Using Adaptive Filter (적응필터를 이용한 적층 복합재료에서의 역산란 X-Ray 신호처리 및 복원)

  • Kim, Noh-Yu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.545-554
    • /
    • 2000
  • Compton X-ray backscatter technique has been used to quantitatively assess the impact damage in quasi-isotropic laminated composites and to obtain a cross-sectional profile of impact-damaged laminated composites from the density variation of the cross section. An adaptive filter is applied to the Compton backscattering data for the reconstruction and noise reduction from many sources including quantum noise, especially when the SNR(signal-to-noise ratio) of the image is relatively low. A nonlinear reconstruction model is also proposed to overcome distortion of the Compton backscatter image due to attenuation effects, beam hardening, and irregular distributions of the fibers and the matrix in composites. Delaminations masked or distorted by the first few delaminations near the front surface are detected and characterized both in width and location, by application of an error minimization algorithm.

  • PDF

Finite element based dynamic analysis of multilayer fibre composite sandwich plates with interlayer delaminations

  • Jayatilake, Indunil N.;Karunasena, Warna;Lokuge, Weena
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.1
    • /
    • pp.15-28
    • /
    • 2016
  • Although the aircraft industry was the first to use fibre composites, now they are increasingly used in a range of structural applications such as flooring, decking, platforms and roofs. Interlayer delamination is a major failure mode which threatens the reliability of composite structures. Delamination can grow in size under increasing loads with time and hence leads to severe loss of structural integrity and stiffness reduction. Delamination reduces the natural frequency and as a consequence may result in resonance. Hence, the study of the effects of delamination on the free vibration behaviour of multilayer composite structures is imperative. The focus of this paper is to develop a 3D FE model and investigate the free vibration behaviour of fibre composite multilayer sandwich panels with interlayer delaminations. A series of parametric studies are conducted to assess the influence of various parameters of concern, using a commercially available finite element package. Additionally, selected points in the delaminated region are connected appropriately to simulate bolting as a remedial measure to fasten the delamination region in the aim of reducing the effects of delamination. First order shear deformation theory based plate elements have been used to model each sandwich layer. The findings suggest that the delamination size and the end fixity of the plate are the most important factors responsible for stiffness reduction due to delamination damage in composite laminates. It is also revealed that bolting the delaminated region can significantly reduce the natural frequency variation due to delamination thereby improving the dynamic performance.

Detection of delamination damage in composite beams and plates using wavelet analysis

  • Bombale, B.S.;Singha, M.K.;Kapuria, S.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.699-712
    • /
    • 2008
  • The effectiveness of wavelet transform in detecting delamination damages in multilayered composite beams and plates is studied here. The damaged composite beams and plates are modeled in finite element software ABAQUS and the first few mode shapes are obtained. The mode shapes of the damaged structures are then wavelet transformed. It is observed that the distribution of wavelet coefficients can identify the damage location of beams and plates by showing higher values of wavelet coefficients at the position of damage. The effectiveness of the method is studied for different boundary conditions, damage location and size for single as well as multiple delaminations in composite beams and plates. It is observed that both discrete wavelet transform (DWT) and continuous wavelet transform (CWT) can detect the presence and location of the damaged region from the mode shapes of the structures. DWT may be used to approximately evaluate the size of the delamination area, whereas, CWT is efficient to detect smaller delamination areas in composites.