• Title/Summary/Keyword: Delamination

Search Result 990, Processing Time 0.027 seconds

Damage of Composite Laminates by Low-Velocity Impact (저속충격에 의한 복합재료 적층판의 손상)

  • AHN SEOK-HWAN;KIM JIN-WOOK;DO JAE-YOON;KIM HYUN-SOO;NAM KI-WOO
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.39-43
    • /
    • 2005
  • The study investigated the nondestructive characteristics of damage, caused by law-velocity impact, on symmetric cross-ply laminates, composed of [0o/90o]16s, 24s, 32s, 48s. The thickness of the laminates was 2, 3, 4 and 6 mm, respectively. The impact machine used, Model 8250 Dynatup Instron, was a drop-weight type that employed gravity. The impact velocities used in this experiment were 0.75, 0.90, 1.05, 1.20 and 1.35 m/sec, respectively. Both the load and the deformation increased when the impact velocity was increased. Further, when the load increased with the laminate thickness in the same impact velocity, the deformation still decreased. The extensional velocity was quick, as the laminate thickness increased in the same impact velocity and the impact velocity increased in the same laminate thickness. In the ultrasonic scans, the damaged area represented a dimmed zone. This is due to the fact that the wave, after the partial reflection by the deflects, does not have enough energy to touch the opposite side or to come back from it. The damaged laminate areas differed, according to the laminate thickness and the impact velocity. The extensional velocities are lower in the 0o direction and higher in the 90o direction, when the size of the defect increases. However, it was difficult to draw any conclusion for the extensional velocities in the 45o direction.

Effects of Intermetallic Compounds Formed during Flip Chip Process on the Interfacial Reactions and Bonding Characteristics (플립칩 공정시 반응생성물이 계면반응 및 접합특성에 미치는 영향)

  • Ha, Jun-Seok;Jung, Jae-Pil;Oh, Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.35-39
    • /
    • 2012
  • We studied interfacial reaction and bonding characteristics of a flip chip bonding with the viewpoint of formation behavior of intermetallic compounds. For this purpose, Sn-0.7Cu and Sn-3Cu solders were reflowed on the Al/Cu and Al/Ni UBMs. When Sn-0.7Cu was reflowed on the Al/Cu UBM, no intermetallic compounds were formed at the solder/UBM interface. The $Cu_6Sn_5$ intermetallic compounds formed by reflowing Sn-3Cu solder on the Al/Cu UBM were spalled from the interface, resulting in delamination of the solder/UBM interface. On the other hand, the $(Cu,Ni)_6Sn_5$ intermetallic compounds were formed by reflowing of Sn-0.7Cu and Sn-3Cu on the Al/Ni UBM and the interfacial bonding between the Sn-Cu solders and the Al/Ni UBM was kept stable.

AE Application for Fracture Behavior of SiC Reinforced CFRP Composites (SiC 강화 CFRP 복합재의 파괴거동에 관한 음향방출 적용)

  • Ryu, Yeong Rok;Yun, Yu Seong;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.16-21
    • /
    • 2016
  • Carbon Fiber Reinforced Plastic(CFRP) composite with a higher specific strength and rigidity is more excellent than conventional metallic materials or other organic polymer of FRP. It has been widely used in vehicles, aerospaces and high technology industries which are associated with nuclear power fields. However, CFRP laminated composite has several disadvantages as like a delamination, matrix brittleness and anisotropic fibers that are the weak points of the crack initiation. In this present work, the reinforced silicon carbide(SiC) particles were added to the interlayer of CFRP laminates in order to mitigate the physical vulnerability affecting the cracking and breaking of the matrix in the CFRP laminated composite because of excellent specific strength and thermal shock resistance characteristics of SiC. The 1wt% of SiC particles were spread into the CFRP prepreg by using a spray coating method. After that, CFRP prepregs were laminated for the specimen. Also, the twill woven type CFRP prepreg was used because it has excellent workability. Thus the mechanical and fracture behaviors of the twill woven CFRP laminated composite reinforced with SiC particles were investigated with the acoustic emission(AE) method under a fracture test. The results show that the SiC particles enhance the mechanical and fracture characteristics of the twill CFRP laminate composite.

Cross-sectional TEM Specimen Preparation of GaN-based Thinfilm Materials Using Alumina Dummy Filler (Alumina dummy 충전재를 이용한 GaN 기반 박막재료의 단면 TEM 시편준비)

  • Oh, Sang-Ho;Choi, Joo-Hyoung;Song, Kyung;Jeung, Jong-Man;Kim, Jin-Gyu;Yu, In-Keun;Yoo, Suk-Jae;Kim, Young-Min
    • Applied Microscopy
    • /
    • v.39 no.3
    • /
    • pp.277-281
    • /
    • 2009
  • Practical difficulties for preparing a good crosssectional specimen of GaN-based materials for transmission electron microscopy have arisen due to large difference of mechanical properties between hard ceramic substrate and soft GaN-layered materials. Uneven polishing, sudden cracking, delamination, and selective sputtering during the conventional wedge polishing technique are often encountered as experimental hindrances. The preparation technique based on Strecker's method can be applied to overcome these difficulties, which eventually leads to mechanically stable TEM samples independent of the mechanical properties of materials. The basic idea is to use hard ceramic dummy filler for embedding the sample of interest into the dummy frame. In this study, we applied this technique into preparing cross-sectional TEM specimen of the GaN-based materials with mechanical instability and demonstrated usefulness of this hard dummy filler method in which the possible modifications of the sample of interest during the preparation must be avoidable. In addition, practical precautions during the preparation were discussed.

Planarization technology of thick copper film structure for power supply (전력 소자용 후막 구리 구조물의 평탄화)

  • Joo, Suk-Bae;Jeong, Suk-Hoon;Lee, Hyun-Seop;Kim, Hyoung-Jae;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.523-524
    • /
    • 2007
  • This paper discusses the planarization process of thick copper film structure used for power supply device. Chemical mechanical polishing(CMP) has been used to remove a metal film and obtain a surface planarization which is essential for the semiconductor devices. For the thick metal removal, however, the long process time and other problems such as dishing, delamination and metal layer peeling are being issued, Compared to the traditional CMP process, Electro-chemical mechanical planarization(ECMP) is suggested to solve these problems. The two-step process composed of the ECMP and the conventional CMP is used for this experiment. The first step is the removal of several tens ${\mu}m$ of bulk copper on patterned wafer with ECMP process. The second step is the removal of residual copper layer aimed at a surface planarization. For more objective comparison, the traditional CMP was also performed. As an experimental result, total process time and process defects are extremely reduced by the two-step process.

  • PDF

CHARACTERISTICS OF DIAMONDLIKE CARBON COATED ALUMINA SEALS AT TEMPERATURES UP TO $400^{\circ}C$ (플라즈마 증착방식에 의해 DLC코팅된 알루미나 세라믹의 코팅박막 특성에 관한 연구)

  • Ok, Chul-Ho;Kim, Byoung-Yong;Kang, Dong-Hun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.397-397
    • /
    • 2007
  • Diamondlike carbon (DLC) coatings were deposited on alumina ceramic seals using a plasma immersion ion deposition technique (PIID). Then they were subjected to tribological tests using a pin-on-disc tribometer under a high load (1.3 GPa) and under elevated temperatures up to 400C. Coefficients of friction (COFs) were recorded and compared with that of the untreated alumina while the wear tracks were analyzed using SEM with EDS to characterize the DLC films. To enhance the DLC adhesion to the substrate, various interlayers including Si and Cr were deposited using the PIID process or an ion beam assisted deposition (IBAD) method. It was observed that the DLC coating, if adhering well to the substrate, reduced the COFs significantly, from 0.4-0.8 for the uncoated alumina to about 0.05-0.1, within the tested temperature range. The adhesion was determined by the interlayer type and possibly by the application method. Cr interlayer did not perform as well as the Si interlayer. This could also be due to the fact that the Cr interlayer and the subsequent DLC coating had to be done in two different processing systems, while both the Si interlayer and the subsequent DLC film were deposited in one system without breaking the chamber. The coating failure mode was found to be delamination between the Cr and the alumina substrate. In contrast, the Si interlayer with proper DLC deposition procedures resulted in very good adhesion and hence excellent tribological performance. Further study may lead to future DLC applications of ceramic seals.

  • PDF

Planarization of Cu intereonnect using ECMP process (전기화학 기계적 연마를 이용한 Cu 배선의 평탄화)

  • Jeong, Suk-Hoon;Seo, Heon-Deok;Park, Boum-Young;Park, Jae-Hong;Lee, Ho-Jun;Oh, Ji-Heon;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.79-80
    • /
    • 2007
  • Copper has been used as an interconnect material in the fabrication of semiconductor devices, because of its higher electrical conductivity and superior electro-migration resistance. Chemical mechanical polishing (CMP) technique is required to planarize the overburden Cu film in an interconnect process. Various problems such as dishing, erosion, and delamination are caused by the high pressure and chemical effects in the Cu CMP process. But these problems have to be solved for the fabrication of the next generation semiconductor devices. Therefore, new process which is electro-chemical mechanical planarization/polishing (ECMP) or electro-chemical mechanical planarization was introduced to solve the. technical difficulties and problems in CMP process. In the ECMP process, Cu ions are dissolved electrochemically by the applying an anodic potential energy on the Cu surface in an electrolyte. And then, Cu complex layer are mechanically removed by the mechanical effects between pad and abrasive. This paper focuses on the manufacturing of ECMP system and its process. ECMP equipment which has better performance and stability was manufactured for the planarization process.

  • PDF

Stacking method of thick composite laminates considering interlaminar normal stresses (층간수직응력을 고려한 두꺼운 복합적층판의 적층방법)

  • 김동민;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.944-951
    • /
    • 1988
  • Global-Local Laminate Variational Model is utilized to investigate the characteristics of interlaminar stresses in thick composite laminates under uniform axial extension. Various laminates with different fiber orientation and stacking sequences are analyzed to observe the behavior of interlaminar normal stresses. From this result, the interlaminar normal stress distribution along the laminate interfaces is examined and discussed with an existing approximation model. The repeated stacking of Poisson's ratio symmetric sublaminates is found to be the best stacking method of thick composite laminates to reduce the interlaminar normal stresses for the prevention of the free-edge delamination.

Fracture Behavior of CFRP by Time-Frequency Analysis Method (시간-주파수 해석법에 의한 CFRP의 파괴 거동)

  • Nam, Ki-Woo;Ahn, Seok-Hwan;Lee, Sang-Kee;Kim, Hyun-Soo;Moon, Chang-Kwon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.39-45
    • /
    • 2001
  • Fourier transform has been one of the most common tools to study the frequency characteristics of signals. With the Fourier transform alone, however, it is difficult to tell whether signal's frequency contents evolve in time or not. Except for a few special cases, the frequency contents of most signals encountered in the real world change with time. Time-frequency analysis methods are developed recently to overcome the drawbacks of Fourier transform, which can represent the information of signals in time and frequency at the same time. In this study, damage process of a cross-ply carbon fiber reinforced plastic (CFRP) under monotonic tensile loading was characterized by acoustic emission. Different kinds of CFRP specimens were used to determine the characteristics of AE signals. Time-frequency analysis methods were employed for the analysis of fracture mechanisms in CFRP such as mix cracking, debonding, fiber fracture and delamination.

  • PDF

Reconstruction and Deconvolution of X-Ray Backscatter Data Using Adaptive Filter (적응필터를 이용한 적층 복합재료에서의 역산란 X-Ray 신호처리 및 복원)

  • Kim, Noh-Yu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.545-554
    • /
    • 2000
  • Compton X-ray backscatter technique has been used to quantitatively assess the impact damage in quasi-isotropic laminated composites and to obtain a cross-sectional profile of impact-damaged laminated composites from the density variation of the cross section. An adaptive filter is applied to the Compton backscattering data for the reconstruction and noise reduction from many sources including quantum noise, especially when the SNR(signal-to-noise ratio) of the image is relatively low. A nonlinear reconstruction model is also proposed to overcome distortion of the Compton backscatter image due to attenuation effects, beam hardening, and irregular distributions of the fibers and the matrix in composites. Delaminations masked or distorted by the first few delaminations near the front surface are detected and characterized both in width and location, by application of an error minimization algorithm.

  • PDF