• Title/Summary/Keyword: Dehumidification rate

Search Result 48, Processing Time 0.024 seconds

An Experimental Study on the Dehumidification Characteristics and the Effectiveness for Operating Conditions of a Desiccant Rotor (운전조건에 따른 제습로터의 제습특성과 유용도에 관한 실험적 연구)

  • Kang, Byung-Ha;Lee, Jin-Joo;Kim, Suk-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.29-36
    • /
    • 2012
  • An experimental study has been carried out to investigate the dehumidification characteristics for several operating conditions of a compact desiccant rotor. This problem is of particular interest in the design of a desiccant type of dehumidifier. Room temperature, room humidity, regeneration temperature, revolution speed and frontal air velocity of desiccant rotor are varied as operating conditions. The results obtained indicate that dehumidification rate is increased with an increase in the room humidity while dehumidification effectiveness is not changed much. It is also found that the optimal rotor speed and optimal regeneration temperature exist for maximum dehumidification rate and dehumidification effectiveness.

An Experimental Study of the Effect of Regeneration Area Ratio on the Performance of Small-Sized Dehumidification Rotor for Residential Usage (재생 면적비가 가정용 소형 제습로터의 성능에 미치는 영향에 관한 실험적 연구)

  • Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.5
    • /
    • pp.277-282
    • /
    • 2015
  • During hot and humid weather, air-conditioners consume a large amount of electricity due to the large amount of latent heat. Simultaneous usage of a dehumidifier may reduce latent heat and reduce electricity consumption. In this study, dehumidification performance was measured for a small-sized dehumidification rotor made of inorganic fiber impregnated with metallic silicate within a constant temperature and humidity chamber. Regeneration to dehumidification depends on ratio, rotor speed, room temperature, regeneration temperature, room relative humidity and frontal velocity to the rotor. Results demonstrate an optimum area ratio (1/2), rotor speed (1.0 rpm), and regeneration temperature ($100^{\circ}C$) to achieve a dehumidification rate of 0.0581 kg/s. As the area ratio increases, the optimum rotation speed and the optimum regeneration temperature also increase. Above the optimum rotor speed, incomplete regeneration reduces dehumidification. Above the optimum regeneration temperature, increased temperature variation between regeneration and dehumidification reduces dehumidification. Dehumidification rate also increases with an increase of relative humidity, dehumidification temperature and flow velocity into the rotor.

An Experimental Study on the Optimization of Performance Parameter for Membrane Based Dehumidification and Air Conditioning System (분리막 제습공조 시스템의 성능변수 최적화를 위한 실험적 연구)

  • Jang, Jeachul;Kang, Eun-Chul;Jeong, Siyoung;Park, Seong-Ryong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.2
    • /
    • pp.75-80
    • /
    • 2016
  • There are three types of dehumidification systems : refrigeration dehumidification method, desiccant dehumidification method and hybrid dehumidification method. The first method involves removing moisture by condensation below the dew point, the second method involves absorption by a desiccant material and the last is an integration method. However, the refrigeration dehumidification system consumes too much power and controlling the humidity ratio is difficult. The desiccant dehumidification system uses less power but it has problems of environmental pollution. The hybrid dehumidification system has the disadvantage of a high initial cost. On the other hand, the energy consumption of the membrane based dehumidification system is lower than for the refrigeration dehumidification system. Also, it is an environmentally friendly technology. In this study, the performance parameters are evaluated for the dehumidification system using a hollow fiber membrane. Available area, duct side dry-bulb temperature, sweep gas flux (flow rate) and LMPD (Log Mean Pressure Difference) were used as the performance parameters.

A Study on the automation of external collector type solar-dehumidification drying of wood using a personal computer (개인용(個人用)컴퓨터를 이용(利用)한 외부집열판형(外部集熱板型) 제습태양열(除濕太陽熱) 목재건조(木材乾燥)의 자동화(自動化)에 관한 연구(硏究))

  • Lee, Hyoung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.23-30
    • /
    • 1992
  • An experimental external external collector type, solar dehumidification dryer was retrofitted with a simple computer-based control system. Solar, solar-dehumidification, and air-drying of 3cm-thick douglas-fir were carried out to investigate the drying-conditions and characteristics of this system, and to analyze the energy efficiencies of each drying met hods in summer. The drying rate of solar-dehumidification was 12%/day, which was about 2 times and 3 times faster than that of solar-and air-drying, respectively. The amount of diurnal temperature fluctuation inside the solar-dryer was greatly reduced and the energy efficiency was enhanced from 25% to 60% by the dehumidifier.

  • PDF

Dynamic Simulation of a Dedicated Outdoor Air-conditioning System (외기 전용 공조기의 동특성 시뮬레이션)

  • Kim, Jung-Min;Kim, Young-Il;Chung, Kwang-Seop;Park, Seung-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.322-327
    • /
    • 2007
  • Dedicated outdoor air-conditioning(DOA) system that utilizes pre-cooling and desiccant dehumidification can be superior to conventional cooling and reheating system with respect to energy consumption and indoor thermal comfort. In this work, simulation has been conducted to study various factors that affect the performance of DOA. Dynamic simulation shows the transient variation of temperature and humidity as the on/off control logic is imposed. Exit humidity of process air and flow rate are varied to study the effect on exit temperature of process air, dehumidification quantity, required regeneration temperature and exit humidity of regeneration air. For an outdoor air condition of $28.5^{\circ}C$ temperature, 16 g/kg humidity ratio and 2000 cmh flow rate, the dehumidification efficiency is increased by 4.6% as the flow rate is doubled.

  • PDF

Research on the Optimal Operating Condition of a Total Heat Exchanger in Solar Air-Conditioning System (태양열 이용 냉난방 공조시스템 중 전열교환기의 최적운전조건에 관한 연구)

  • Kim, K.H.;Choi, K.H.;Kum, J.S.;Kim, B.C.;Kim, D.G.
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.55-62
    • /
    • 1999
  • This study was performed to find out the influence of experimental factors on dehumidification performance and furthermore to suggest an optimal combination of factors of a total heat exchanger in a solar air conditioning system. The experimental apparatus was set up in a climate-controlled chamber where the temperature and humidity was maintained constant. In order to find out the contribution ratio of factors on dehumidification performance, the table of orthogonal arrays $L_8(2^7)$ was used. According to the results, the most influential factor on dehumidification performance was the concentration of LiCl(Lithium Chloride) solution. The next influential factors were the temperature of LiCl solution and the air flow rate. The packed layer height, packed material, and flow rate of LiCl solution had no influence on the dehumidification performance under these experimental conditions. Through the three level experiments of $L_{27}(3^{13})$, it was found that the optimal combination was $A_2B_0G_2$(concentration of solution 30 wt%, temperature of solution $15^{\circ}C$, air flow rate $253m^3/h$).

  • PDF

A Study on Shape Improvement of Dehumidifier for Pneumatic System using Computational Fluid Dynamics (전산유체역학을 이용한 공압시스템용 제습장치의 형상 개선에 관한 연구)

  • Jeong, Eun-A;Yun, So-Nam;Lee, Kee-Yoon
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.51-58
    • /
    • 2019
  • In this study, flow analysis and dehumidification experiment were conducted on hollow fiber membrane module to determine the dehumidification characteristics of its various configurations. A quantitative analysis of the CFD for four different models with a temperature of $30^{\circ}C$ and 30%RH inlet humidity was conducted. Each model has different shape parameters i.e. the number of hollow fiber membranes and the presence or absence of baffles. After comparison between the flow analysis results and dehumidification experiment results, the percentage error was found to be approximately 2%. The moisture removal rate for each model was calculated using flow analysis data. It was found that the moisture removal rate of refined model with three baffles and eight hollow fiber membranes was highest among the four modeled modules of hollow fiber membrane one, i.e. about 60%.

A Study on the Rotary Absorptive Dehumidifer (회전형 흡수식 제습기에 관한 연구)

  • Kim, Young-Il;Kim, Hyo-Kyung
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.2
    • /
    • pp.169-181
    • /
    • 1986
  • A numerical analysis has been conducted on the dehumidification phenomena of rotary absorptive dehumidifier. Parameters that affect the dehumidification efficiency, such as regeneration temperature, humidity, rotor angular velocity, air flow rate and regeneration section angle are studied and optimum driving conditions are determined from the results, Furthermore three new types of dehumidification method are developed to improve the efficiency They are named MODE 2, 3 and 4, while the present one MODE 1. Cooling zone has been constructed between regeneration and process Bone in MODE 2 and as a result exit temperature of the process air decreases. MODE 3 an improvement of MODE 2, recirculates the cooling air into the regeneration zone and regeneration input as well as exit temperature decreases. In MODE 4, some of tee regeneration air is recirculated and it cuts down the regeneration input. Among them MODE 3, showed the best dehumidification efficiency.

  • PDF

Improvement of Cooling Efficiency in Greenhouse Fog System Using the Dehumidifier (제습기를 이용한 온실 포그냉방시스템의 효율향상)

  • Nam Sang Woon;Kim Kee Sung;Giacomelli Gene A.
    • Journal of Bio-Environment Control
    • /
    • v.14 no.1
    • /
    • pp.29-37
    • /
    • 2005
  • In order to provide fundamental data on utilization of dehumidifier in greenhouses, a condensing type dehumidifier using ground water as a coolant was developed and tested dehumidification performance. The developed dehumidifier was applied to greenhouse with fog cooling system and effect of dehumidification on improvement of evaporative cooling efficiency was analyzed. Results of the dehumidifier performance test showed that dehumidification using ground water as a coolant was sufficiently possible in fog cooling greenhouse. When the set point temperature of greenhouse cooling was $32^{\circ}C$ and as temperatures of ground water rose from $15^{\circ}C\;to\;18^{\circ}C,\;21^{\circ}C\;and\;24^{\circ}C$, dehumidification rates decreased by $17.7\%,\;35.4\%\;and\;52.8\%$, respectively. As flow rates of ground water reduced to $75\%\;and\;50\%$, dehumidification rates decreased by $12.1\%\;and\;30.5\%$, respectively. Cooling efficiency of greenhouse equipped with fog system was distinctly improved by artificial dehumidification. When the ventilation rate was 0.7 air exchanges per minute, dehumidification rates of the fog cooling greenhouse caused by natural ventilation were 53.9%-74.4% and they rose up to 75.4%-95.9% by operating the dehumidifier. In case of using the ground water of $18^{\circ}C$ and flow rate of design condition, it was analyzed that whole fog spraying water can be dehumidified even if the ventilation rate is 0.36 exchanges per minute. As a utilization of dehumidifier, it is possible to improve cooling efficiency of fog system in naturally ventilated greenhouses.

Study on the Characteristics of the dehumidification LDPE film (제습 LDPE 필름에 관한 특성 분석연구)

  • JO, Dong-Soo;Noh, Young-Tai;Park, Byung-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7917-7924
    • /
    • 2015
  • In this study, based on CMA which is increasingly used for eco-friendly deicing materials, dehumidification MB made of sodium carbonate, $MgCl_2$/MgO (M/M), and SAP is to be produced. And its moisture absorption rate and dehumidification performance of the film are to be analyzed. And the data on the materials used for the dehumidification film are to be acquired. In case of the dehumidification MB, in which CMA and SAP are mixed, had poor film machinability due to foaming and moisture issues, but adding bentonite and calcium carbonate solved the problem. When a foaming agent was added to extend surface area between substances, CMA and M/M showed no remarkable difference, but SC showed large increase to 3.15 g/g. As the result of anti-corrosive test, CMA dehumidification film showed no corrosion while SC showed pitting corrosion and M/M showed corrosion.