• Title/Summary/Keyword: Degrading microorganisms

Search Result 149, Processing Time 0.031 seconds

Isolation of a Nonylphenol-degrading Microbial Consortium (Nonylphenol 분해 미생물 컨소시엄 균주 개발)

  • Song, Won;Lim, Keun-Sick;Yu, Dae-Ung;Park, Mi-Eun;Jeong, Eun-Tak;Kim, Dong-Myung;Chung, Yong-Hyun;Kim, Young-Mog
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.4
    • /
    • pp.325-331
    • /
    • 2011
  • Nonylphenol (NP), which is well known as an endocrine disrupter, has been detected widely in untreated sewage or waste water streams. Given the necessity of discovering an eco-friendly method of degrading this toxic organic compound, this study was conducted to isolate NP-degrading microorganisms from the aqueous environment. NP-degrading microbes were isolated through NP-containing enrichment culture. Finally, a microbial consortium, SW-3, capable of degrading NP with high efficiency, was selected from the mixture sample. The microbial consortium SW-3 was able to degrade over 99% of 100 ppm NP in the culture medium for 40 days at $25^{\circ}C$. The microbial consortium SW-3 seemed to utilize NP as a carbon source, since NP was the sole carbon source in the culture medium. In order to isolate the NP-degrading bacterium, we further conducted single colony isolation using the microbial consortium SW-3. Four strains isolated from SW-3 exhibited lower NP-degradation efficiency than that of SW-3, suggesting that NP was degraded by the co-metabolism of the microbial consortium. We suggest that the microbial consortium obtained in this study would be useful in developing an eco-friendly bioremediation technology for NP degradation.

Polychlorobiphenyl (PCB) 토양오염복원: PCB 제거 토양미생물들의 군집과 기능을 효과적으로 분석하는 신 genomics 방법개발에 관한 연구

  • Park Jun-Hong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.28-30
    • /
    • 2005
  • Because of high population diversity in soil microbial communities, it is difficult to accurately assess the capability of biodegradation of toxicant by microbes in soil and sediment. Identifying biodegradative microorganisms is an important step in designing and analyzing soil bioremediation. To remove non-important noise information, it is necessary to selectively enrich genomes of biodegradative microorganisms fromnon-biodegradative populations. For this purpose, a stable isotope probing (SIP) technique was applied in selectively harvesting the genomes of biphenyl-utilizing bacteria from soil microbial communities. Since many biphenyl-using microorganisms are responsible for aerobic PCB degradation In soil and sediments, biphenyl-utilizing bacteria were chosen as the target organisms. In soil microcosms, 13C-biphenyl was added as a selective carbon source for biphenyl users, According to $13C-CO_2$ analysis by GC-MS, 13C-biphenyl mineralization was detected after a 7-day of incubation. The heavy portion of DNA(13C-DNA) was separated from the light portion of DNA (12C-DNA) using equilibrium density gradient ultracentrifuge. Bacterial community structure in the 13C-DNAsample was analyzed by t-RFLP (terminal restriction fragment length polymorphism) method. The t-RFLP result demonstates that the use of SIP efficiently and selectively enriched the genomes of biphenyl degrading bacteria from non-degradative microbes. Furthermore, the bacterial diversity of biphenyl degrading populations was small enough for environmental genomes tools (metagenomics and DNA microarrays) to be used to detect functional (biphenyl degradation) genes from soil microbial communities, which may provide a significant progress in assessing microbial capability of PCB bioremediation in soil and groundwater.

  • PDF

Biodegradation Characteristics of Poly-3-hydroxybutyrate, $Sky-Green^R$ and $Mater-Bi^R$ by Soil Bacteria (토양세균의 Poly-3-hydroxybutyrate,$Sky-Green^R$$Mater-Bi^R$분해 특성)

  • 이애리;김말남
    • Korean Journal of Microbiology
    • /
    • v.36 no.4
    • /
    • pp.299-305
    • /
    • 2000
  • Degradation behavior of the three commercial biodegradable polymers, namely poly(3-hydroxybutyrate) (PHB) Sky-Green/sup R/ (SG) and Mater-Bi/sup R/ (MB) was investigated using bacteria isolated from activated sludge and farm soil. Three PHB degrading bacteria, three SG degrading bacteria and one MB degrading bacteria were isolated. The PHB degrading bacteria were identified to be Flavimonas oryzihabitans, Corynebacterium pseudodiphtheriticum and Micrococcus diversus, while Pseudomonas vesicuraris, Pasteurlla multocida and Flavobacterium odoratum were identified as SG degrading bacteria. As for MB, Pseudomonas vesicuraris was isolated. The shake flask test for 28 days indicated that the rate of biodegradation of PHB, SG and MB in terms of weight loss were about 44∼69% 25∼32% and 29% respectively. The surface morphology of PHB, SG andMB films before and after degradation by microorganisms in an activated sludge soil was observed under SEM, demonstrating that the film surface had a very porous structure, and that microorganisms colonized heavily on the film surface. TOC and pH variation as a result of abiotic hydrolysis, or microbial growth in the absence of the polymers were compared to those due to degradation by F. oryzihabitans. Abiotic hydrolysis of PHB was three times as fast as that of SG and MB. Addition of yeast extract to the basal liquid medium accelerated the biodegradation of the polymers. Biodegradation of PHB was always faster than that of SG and MB irrespectively of the presence of yeast extract in the basal liquid medium.

  • PDF

Evaluation of Bioremediation Effectiveness by Resolving Rate-Limiting Parameters in Diesel-Contaminated Soil

  • Joo, Choon-Sung;Oh, Young-Sook;Chung, Wook-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.607-613
    • /
    • 2001
  • The biodegradation rates of diesel oil by a selected diesel-degrading bacterium, Pseudomonas stutzeri strain Y2G1, and microbial consortia composed of combinations of 5 selected diesel-degrading bacterial were determined in liquid and soil systems. The diesel degradation rate by strain Y2G1 linearly increased $(R^2=0.98)$ as the diesel concentration increased up to 12%, and a degradation rate as high as 5.64 g/l/day was obtained. The diesel degradation by strain Y2G1 was significantly affected by several environmental factors, and the optimal conditions for pH, temperature, and moisture content were at pH8, $25^{\circ}C$, and 10%, respectively. In the batch soil microcosm tests, inoculation, especially in the form of a consortium, and the addition of nutrients both significantly enhanced the diesel degradation by a factor of 1.5 and 4, respectively. Aeration of the soil columns effectively accelerated the diesel degradation, and the initial degradation rate was obviously stimulated with the addition of inorganic nutrients. Based on these results, it was concluded that the major rate-limiting factors in the tested diesel-contaminated soil were the presence of inorganic nutrients, oxygen, and diesel-degrading microorganisms. To resolve these limiting parameters, bioremediation strategies were specifically designed for the tested soil, and the successful mitigation of the limiting parameters resulted in an enhancement of the bioremediation efficiency by a factor of 11.

  • PDF

Isolation of Alginate-Degrading Marine Bacteria and Characterization of Alginase (알긴산 분해 해양미생물의 분리 및 alginase 특성 평가)

  • 이재화;이은열
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.718-722
    • /
    • 2003
  • Various marine microorganisms were isolated from seaweed, and their alginate-degrading activities were investigated. An alginate-degrading bacteria, Vibrio sp. AEBL-211, showed highest level of alginase activity when cultured on a mineral salt medium containing 0.7%(w/v) sodium alginate as the sole carbon source. The intracellular alginase from AEBL-211 was partially purified by ion chromatography on DE 52-cellulose column and gel filteration on Sepacryl G-200 column, and showed guluronate-specific 1yase activity.

Isolation of Polyacrylamide-degrading Microorganisms from Soil

  • Matsuoka, H.;Ishimura, F.;Takeda, T.;Hikuma, M.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.5
    • /
    • pp.327-330
    • /
    • 2002
  • Two polyacrylamide degrading bacterial strains, No. 2 and No. 11, were isolated from soil, and identified as Bacillus sphaericus No.2 and Acinetobacter sp. No. 11, respectively. Both strains grew on medium containing polyacrylamide as sole carbon and nitrogen sources. B. sphaericus No. 2 and A. sp. No. 11 reduced by 16% and 19%of the initial polyacrylamide concentration, respectively. Optimal pH and temperature in growth of Acinetobacter sp. No. 11 were 8.0 and $37^{\circ}C$, respectively. After 14-day cultivation of A. sp. No. 11, the average molecular weight of polyacrylamide has been shifted from $2.3{\times}10^6\;to\;0.5{\time}106$.

Toluene Monooxygenase의 Peroxide shuntting에 의한 TCE와 PCE 분해 특성

  • 류두현;김형수;최용욱;김용미;이경애;유재수;조현
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.277-280
    • /
    • 2004
  • TCE and PCE, suspected carcinogens, are the most common groundwater pollutant from extensive use as a solvent and degreaser. Escherichia coli TGI pBSKAN TOM Green and E. coli TGI pBSKAN ToMO, which were used DNA shuffling technique, produce Toluene-o-monooxygenase(TOM) and toluene-o-xylene- monooxygenase(ToMO). These cells and enzymes are degrading TCE and PCE, TOM and ToMO are needed to cofactor, such as NADH, NADPH and other cofactors. Used TCE and PCE degrading microorganisms experiment the contaminated material removal efficiency. A shunting test used NAD and Hydrogen peroxide.

  • PDF

Degradation of MS(Linear Alkylbenzene Sulfonate) by Plasmid (LAS(Linear Alkybenzene Sulfonate)의 Plasmid에 의한 분해)

  • 차전옥;유진삼;백형석
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.2
    • /
    • pp.158-163
    • /
    • 1994
  • Microorganisms capale of utilizing linear alkylbenzene sulfonates(LAS) as sole carbon source were isolated from industrial effluent by using LAS agar plates. The isolated strains were identified as Salmonella sp(BC-2) and Escherichia sp.(BC-3) from the results of morphological, cultural and biochemical tests. The optimal condition for the growth and biodegradation of LAS was the initial pH 7.0 and LAS concentration 0.1%. The isolated BC-2 and BC-3 strains harbored plasmid and LAS-degrading activity was lost when the plasmids were cured by mitomycin C. The plasmids were transformed into E. coli and transformants have the LAS-degrading activity. Isolated strains were examined for primary biodegradation rate of LAS in the medium by methylene blueactive substance(MBAS) method. Of these isolates, BC-2 and BC-3 strains degradated LAS upto 60% and high resistant to CdCl$_{2}$ and HgCl$_{2}$. Isolated strains were sensitive to chloramphenicol, kanamycin, rifampicin, streptomycin and tetracycline but resistant to ampicillin and lincomycin.] Its minimal inhibitory concentration(MIC) for ampicillin was more than 1500 $\mu $g/ml.

  • PDF

Food application of enzymes derived from microorganisms degrading chitin and chitosan (키틴과 키토산 분해 미생물 유래 효소의 식품에의 이용)

  • Park, Jae Kweon
    • Food Science and Industry
    • /
    • v.53 no.1
    • /
    • pp.43-55
    • /
    • 2020
  • Most reports demonstrated the substrate specificity-based kinetic properties of chitin or chitosan degrading enzymes. However, there is virtually less information on the high quality and quantity production of chitin or chitosan hydrolysates having a larger than (GlcN)7 from the hydrolysis of high molecular weight chitosan using specific enzymes and their biological activity. Therefore, the production of such molecules and the discovery of such enzyme sources are very important. Fortunately, the author has established a mass production method of chitosan hydrolysates (GlcN)n, n=2-13 that have been characterized as a potent antioxidant substance, as well as antifungal and antibacterial activities against Penicillium species and highly selective pathogenic bacteria. In addition, preclinical studies using (GlcN)n, n=5-25 demonstrated that these molecules played a very important role in maintaining biometric balance. Collectively, it is implicated that the application of these mixed substances to foods with significant biological activity is very encouraging.

Biodegradation of Polynuclear Aromatic Hydrocarbons in soil using microorganisms under anaerobic conditions (혐기성 미생물에 의한 토양내 다핵성방향족화합물의 생물학적 분해)

  • An, Ik-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.89-91
    • /
    • 2000
  • Polynuclear aromatic hydrocarbon (PAH) compounds are highly carcinogenic chemicals and common groundwater contaminants that are observed to persist in soils. The adherence and slow release of PAHs in soil is an obstacle to remediation and complicates the assessment of cleanup standards and risks. Biological degradation of PAHs in soil has been an area of active research because biological treatment may be less costly than conventional pumping technologies or excavation and thermal treatment. Biological degradation also offers the advantage to transform PAHs into non-toxic products such as biomass and carbon dioxide. Ample evidence exists for aerobic biodegradation of PAHs and many bacteria capable of degrading PAHs have been isolated and characterized. However, the microbial degradation of PAHs in sediments is impaired due to the anaerobic conditions that result from the typically high oxygen demand of the organic material present in the soil, the low solubility of oxygen in water, and the slow mass transfer of oxygen from overlying water to the soil environment. For these reasons, anaerobic microbial degradation technologies could help alleviate sediment PAH contamination and offer significant advantages for cost-efficient in-situ treatment. But very little is known about the potential for anaerobic degradation of PAHs in field soils. The objectives of this research were to assess: (1) the potential for biodegradation of PAH in field aged soils under denitrification conditions, (2) to assess the potential for biodegradation of naphthalene in soil microcosms under denitrifying conditions, and (3) to assess for the existence of microorganisms in field sediments capable of degrading naphthalene via denitrification. Two kinds of soils were used in this research: Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS). Results presented in this seminar indicate possible degradation of PAHs in soil under denitrifying conditions. During the two months of anaerobic degradation, total PAH removal was modest probably due to both the low availability of the PAHs and competition with other more easily degradable sources of carbon in the sediments. For both Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS), PAH reduction was confined to 3- and 4-ring PAHs. Comparing PAH reductions during two months of aerobic and anaerobic biotreatment of MHS, it was found that extent of PAHreduction for anaerobic treatment was compatible with that for aerobic treatment. Interestingly, removal of PAHs from sediment particle classes (by size and density) followed similar trends for aerobic and anaerobic treatment of MHS. The majority of the PAHs removed during biotreatment came from the clay/silt fraction. In an earlier study it was shown that PAHs associated with the clay/silt fraction in MHS were more available than PAHs associated with coal-derived fraction. Therefore, although total PAH reductions were small, the removal of PAHs from the more easily available sediment fraction (clay/silt) may result in a significant environmental benefit owing to a reduction in total PAH bioavailability. By using naphthalene as a model PAH compound, biodegradation of naphthalene under denitrifying condition was assessed in microcosms containing MHS. Naphthalene spiked into MHS was degraded below detection limit within 20 days with the accompanying reduction of nitrate. With repeated addition of naphthalene and nitrate, naphthalene degradation under nitrate reducing conditions was stable over one month. Nitrite, one of the intermediates of denitrification was detected during the incubation. Also the denitrification activity of the enrichment culture from MHS slurries was verified by monitoring the production of nitrogen gas in solid fluorescence denitrification medium. Microorganisms capable of degrading naphthalene via denitrification were isolated from this enrichment culture.

  • PDF