• 제목/요약/키워드: Deformation mechanisms

검색결과 254건 처리시간 0.028초

마찰을 고려한 플라스틱 시트의 절단특성에 관한 연구 (A Study on the Cutting characteristics of a plastic sheet including Friction)

  • 한주현;김도현;김청균
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.245-248
    • /
    • 2004
  • The press cutter is productive equipment that practically manufactures materials such as fabrics, papers, films, leathers, rubbers etc. into the desired shapes using cutting method. Plate cutting process is one of the primary energy absorbing mechanisms in a grounding or collision event. The cutting mechanism is complicated and involves plastic flow of plate in the vicinity of the tip, friction between wedge and plate, deformation of plate. In this paper, we studied the effect of friction between cutter and plastic sheet for producing precise and superior products. The press cutter is analyzed numerically using MARC finite element program according to the variation of friction coefficients. The FEM results showed that normal stress, equivalent cauchy stress, normal total strain, equivalent total strain are good when friction coefficient is 0.0 and shear stress, shear total strain are good when friction coefficient is 0.8.

  • PDF

How to Improve the Ductility of Nanostructured Materials

  • Eckert J.;Duhamel C.;Das J.;Scudino S.;Zhang Z. F.;Kim, K. B.
    • 한국분말재료학회지
    • /
    • 제13권5호
    • /
    • pp.340-350
    • /
    • 2006
  • Nanostructured materials exhibit attractive mechanical properties that are often superior to the performance of their coarse-grained counterparts. However, one major drawback is their low ductility, which limits their potential applications. In this paper, different strategies to obtain both high strength and enhanced ductility in nanostructured materials are reported for Ti-base and Zr-base alloys. The first approach consists of designing an in-situ composite microstructure containing ductile bcc or hop dendrites that are homogeneously dispersed in a nanostructured matrix. The second approach is related to refining the eutectic structure of a Ti-Fe-Sn alloy. For all these materials, the microstructure, mechanical properties, deformation and fracture mechanisms will be discussed.

유리섬유강화 복합재료의 미끄럼 속도변화에 따른 마모 특성 (Characteristics of Wear on Sliding Speed of Glass Fiber Reinforcement Composites)

  • 김형진;고성위
    • 수산해양기술연구
    • /
    • 제48권3호
    • /
    • pp.277-283
    • /
    • 2012
  • The characteristics of abrasive wear on sliding speed of glass fiber reinforcement (GF/PUR) composites were investigated at ambient temperature by pin-on-disc friction test. The cumulative wear volume, friction coefficient and surface roughness of these materials on sliding speed were determined experimentally. The major failure mechanisms were lapping layers, deformation of resin, ploughing, delamination, and cracking by scanning electric microscopy (SEM) photograph of the tested surface. As increasing the sliding speed the GF/PUR composites indicated higher friction coefficient. The surface roughness of the GF/PUR composites was increased as the sliding speed was higher in wear test.

입자 함유율의 변화에 따른 나노 실리카 복합재료의 마모 특성 (Wear characteristics on particle volume fraction of nano silica composite materials)

  • 이정규;고성위
    • 수산해양기술연구
    • /
    • 제49권4호
    • /
    • pp.492-499
    • /
    • 2013
  • The characteristics of abrasive wear of the rubber matrix composites filled with nano sized silica particles were investigated at ambient temperature by pin-on-disc friction test. The range of volume fraction of silica particles tested are between 11% to 25%. The cumulative wear volume and friction coefficient of these materials on particle volume fraction were determined experimentally. The major failure mechanisms were lapping layers, deformation of matrix, ploughing, deboding of particles and microcracking by scanning electric microscopy photograph of the tested surface. The cumulative wear volume showed a tendency to increase nonlinear with increase of sliding distance. As increasing the silica particles of these composites indicated higher friction coefficient.

Ni계 및 Co계 합금 PTA 오버레이용접층의 마모거동에 관한 연구 (Wear Behavior of Plasma Transferred Arc Deposited Layers for Ni - and Co - base Alloy)

  • 윤병현;이창희;김형준
    • Journal of Welding and Joining
    • /
    • 제19권5호
    • /
    • pp.540-547
    • /
    • 2001
  • This study has evaluated the wear behavior of PTA (Plasma Transferred Arc) Inconel 625 and Stellite 6 overlays on Nimonic 80A substrate. Nimonic 80A alloy was also included for comparison. In order to evaluate the wear performance, three-body abrasive wear test and pin-on-disk dry sliding wear test were performed. Microstructural development during the solidification of deposits is also discussed. Wear test results show that the wear rate of Stellite 6 deposit is lower than that of Inconel 625 deposit and Nimonic 80A. The sliding wear resistance of overlay deposits follows a similar trend to the abrasive wear resistance, but for Nimonic 80A. The main wear mechanisms were abrasive wear for Inconel 625 deposit, adhesive wear and delamination for Stellite 6 deposit in pin-on-disk dry sliding wear test and ploughing in three-body abrasive wear test. Cross sectional examinations of the worn surface of pin specimens after pin-on-disk dry sliding wear test implies that the plastic deformation near worn surface has occurred during the wear testing.

  • PDF

Development of Research into Autophagic Lysosome Reformation

  • Chen, Yang;Yu, Li
    • Molecules and Cells
    • /
    • 제41권1호
    • /
    • pp.45-49
    • /
    • 2018
  • Autophagy is a lysosome-dependent degradation process that is essential for maintaining cellular homeostasis. In recent years, more studies have focused on the late stages of autophagy. Our group discovered and studied the terminal step of autophagy, namely autophagic lysosome reformation (ALR). ALR is the process that regenerates functional lysosomes from autolysosomes, thus maintaining lysosome homeostasis. ALR involves clathrin-mediated membrane budding from autolysosomes, elongation of membrane tubules along microtubules with the pulling force provided by the motor protein KIF5B, proto-lysosome scission by dynamin 2, and finally maturation of proto-lysosomes to functional lysosomes. In this review, we will summarize progress in unveiling the molecular mechanisms underlying ALR and its potential pathophysiological roles.

형상기억합금을 이용한 지능형 고분자 복합재료의 설계 (Design of an Intelligent Polymer-Matrix-Composite Using Shape Memory Alloy)

  • 정태헌
    • 대한기계학회논문집A
    • /
    • 제21권10호
    • /
    • pp.1609-1618
    • /
    • 1997
  • Thermo-mechanical behaviors of polymer matrix composite(PMC) with continuous TiNi fiber are studied using theoretical analysis with 1-D analytical model and numerical analysis with 2-D multi-fiber finite element(FE) model. It is found that both compressive stress in matrix and tensile stress in TiNi fiber are the source of strengthening mechanisms and thermo-mechanical coupling. Thermal expansion of continuous TiNi fiber reinforced PMC has been compared with various mechanical behaviors as a function of fiber volume fraction, degree of pre-strain and modulus ratio between TiNi fiber and polymer matrix. Based on the concept of so-called shape memory composite(SMC) with a permanent shape memory effect, the critical modulus ratio is determined to obtain a smart composite with no or minimum thermal deformation. The critical modulus ratio should be a major factor for design and manufacturing of SMC.

Finite element implementation of a steel-concrete bond law for nonlinear analysis of beam-column joints subjected to earthquake type loading

  • Fleury, F.;Reynouard, J.M.;Merabet, O.
    • Structural Engineering and Mechanics
    • /
    • 제7권1호
    • /
    • pp.35-52
    • /
    • 1999
  • Realistic steel-concrete bond/slip relationships proposed in the literature are usually uniaxial. They are based on phenomenological theories of deformation and degradation mechanisms, and various pull-out tests. These relationships are usually implemented using different analytical methods for solving the differential equations of bond along the anchored portion, for particular situations. This paper justifies the concepts, and points out the assumptions underlying the construction and use of uniaxial bond laws. A finite element implementation is proposed using 2-D membrane elements. An application example on an interior beam-column joint illustrates the possibilities of this approach.

The inelastic buckling of varying thickness circular cylinders under external hydrostatic pressure

  • Ross, C.T.F.;Gill-Carson, A.;Little, A.P.F.
    • Structural Engineering and Mechanics
    • /
    • 제9권1호
    • /
    • pp.51-68
    • /
    • 2000
  • The paper presents theoretical and experimental investigations on three varying thickness circular cylinders, which were tested to destruction under external hydrostatic pressure. The five buckling theories that were presented were based on inelastic shell instability. Three of these inelastic buckling theories adopted the finite element method and the other two theories were based on a modified version of the much simpler von Mises theory. Comparison between experiment and theory showed that one of the inelastic buckling theories that was based on the von Mises buckling pressure gave very good results while the two finite element solutions, obtained by dividing the theoretical elastic instability pressures by experimentally determined plastic knockdown factors gave poor results. The third finite element solution which was based on material and geometrical non-linearity gave excellent results. Electrical resistance strain gauges were used to monitor the collapse mechanisms and these revealed that collapse occurred in the regions of the highest values of hoop stress, where considerable deformation took place.

한계해석법에 의한 파일-지반-터널 상호작용 해석 (Upper and Lower Bound Solutions for Pile-Soil-Tunnel Interaction)

  • 이용주;신종호
    • 한국터널공학회:학술대회논문집
    • /
    • 한국터널공학회 2005년도 학술발표회 논문집
    • /
    • pp.77-86
    • /
    • 2005
  • In urban areas, new tunnel construction work is often taking place adjacent to existing piled foundations. In this case, careful assessment for the pile-soil-tunnel interaction is required. However, research on this topic has not been much reported, and currently only limited information is available. In this study, the complex pile-soil-tunnel interaction is investigated using the upper and lower bound methods based on kinematically possible failure mechanism and statically admissible stress field respectively. It is believed that the limit theorem is useful in understanding the complicated interaction behaviour mechanism and applicable to the pile-soil-tunnel interaction problem. The results are compared with numerical analysis. The material deformation patterns and strain data from the FE output are shown to compare well with the equivalent physical model tests. Admissible stress fields and the failure mechanisms are presented and used to develop upper and lower bound solutions to assess minimum support pressures within the tunnel.

  • PDF