• Title/Summary/Keyword: Deformation gradient

Search Result 275, Processing Time 0.028 seconds

Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations

  • Zohra, Abdelhak;Benferhat, Rabia;Tahar, Hassaine Daouadji;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.797-807
    • /
    • 2021
  • A new simple solution for critical buckling of FG sandwich plates under axial and biaxial loads is presented using new modified power-law formulations. Both even and uneven distributions of porosity are taken into account in this study. Material properties of the sandwich plate faces are assumed to be graded in the thickness direction according to a modified power-law distribution in terms of the volume fractions of the constituents. Equilibrium and stability equations of FG sandwich plate with various boundary conditions are derived using the higher-order shear deformation plate theory. The results reveal that the distribution shape of the porosity, the gradient index, loading type and functionally graded layers thickness have significant influence on the buckling response of functionally graded sandwich plates.

Vibration of piezo-magneto-thermoelastic FG nanobeam submerged in fluid with variable nonlocal parameter

  • Selvamani Rajendran;Rubine Loganathan;Murat Yaylaci;Ecren Uzun Yaylaci;Mehmet Emin Ozdemir
    • Advances in nano research
    • /
    • v.16 no.5
    • /
    • pp.489-500
    • /
    • 2024
  • This paper studies the free vibration analysis of the piezo-magneto-thermo-elastic FG nanobeam submerged in a fluid environment. The problem governed by the partial differential equations is determined by refined higher-order State Space Strain Gradient Theory (SSSGT). Hamilton's principle is applied to discretize the differential equation and transform it into a coupled Euler-Lagrange equation. Furthermore, the equations are solved analytically using Navier's solution technique to form stiffness, damping, and mass matrices. Also, the effects of nonlocal ceramic and metal parts over various parameters such as temperature, Magnetic potential and electric voltage on the free vibration are interpreted graphically. A comparison with existing published findings is performed to showcase the precision of the results.

A Study on Deflection Characteristics of Plywood for Wood Based Flooring by Veneer Composition (마루판용 합판의 단판 구성요소에 따른 변형 특성에 관한 연구)

  • Pi, Duck-Won;Kang, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.42-50
    • /
    • 2013
  • Since 1990's, a plywood for flooring base has gotten customers' demand. Costs of raw material and production increased because of changed environment of industry. Tropical timber such as Red Meranti (Shorea acuminate) used for raw material of the floor has been depleting beside countries in South Eastern Asia changed species of afforestation. As a result, it gets hard to secure good quality of raw material for plywood. Moreover plywood price is increased suddenly after earthquake in Japan. Eucalyptus (Eucalyptus globulus) in china has been using for raw material as a countermeasure of changed environment of industry. In this study, possibility of using flooring consisted of Eucalyptus veneer as crossband layers was checked by deflection experiments. Flooring consisted of Red Meranti was used for comparison. Two factors which impact on deflection are a type of density gradient and density difference between Long-grain veneer and Short-grain veneer. Red Meranti samples are M type of density gradient on the other hand Eucalyptus samples are W type of density gradient. The more samples have high density difference, the more deformation was checked. A sample which has big density difference between core and cross bands layer warp more also deform. Flooring was deformed smaller than plywood and samples which have big density difference was deformed more.

Vessel Collision Analysis of an Underwater Soil Slope using Coupled Eulerian-Lagrangian Scheme 2: Parametric Study (Coupled Eulerian-Lagrangian 기법을 이용한 선박의 수중사면 충돌해석 2 : 매개변수연구)

  • Lee, Gyehee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • In this study, parametric analyses are performed using the coupled Eulerian-Lagrangian scheme for the collision behaviors of a vessel and an underwater slope that constitutes part of an artificial protective island. The vessel parameters considered in the analysis are bow angle, stem angle, draft, and impact velocity. The gradient of the slope, the friction coefficient between the bow and the slope, and soil strength are considered as parameters of the slope. For each parameter, the dissipated collision energy and the collision force are estimated from the behavior of the vessel, and the energy dissipation mechanism is identified in terms of the ground deformation. The collision force is assumed as an exponential function, and the effects of the parameters are estimated. As a result, only two parameters, the gradient of the slope and the friction coefficient between the vessel and the soil, can affect the exponential coefficient of the function. The dissipated energy by the soil can thus be estimated adequately. The relationship between the volume of the soil pushed out by the bow and the dissipated collision energy is estimated as a linear function. This relationship is independent of the magnitude of the collision energy, and affected more by the friction coefficient and the soil strength than by the parameters of the vessel.

Residual Stress in U-Bending Deformations and Expansion Joints of Heat Exchanger Tubes (전열관의 굽힘 및 확관접합 잔류응력)

  • Jang, Jin-Seong;Bae, Gang-Guk;Kim, U-Gon;Kim, Seon-Jae;Guk, Il-Hyeon;Kim, Seong-Cheong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.279-289
    • /
    • 2000
  • Residual stress induced in U-bending and tube-to-tubesheet joint processes of PWR's row-1 heat exchanger tube was measured by X-ray method and Hole-Drilling Method(HDM). Compressive residual stresses(-) at the extrados surface were induced in U-bending, and its maximum value reached -319 MPa in axial direction at the position of $\psi$ = $0^{\circ}$. Tensile residual stresses(+) of $\sigma_{zz}$ = 45 MPa and $\sigma_{\theta\theta}$ = 25 MPa were introduced in the intrados surface at the position of $\psi$ = $0^{\circ}$. Maximum tensile residual stress of 170 MPa was measured at the flank side at the position of $\psi$ = $90^{\circ}$, i.e., at apex region. It was observed that higher stress gradient was generated at the irregular transition regions (ITR). The trend of residual stress induced by U bending process of the tubes was found to be related with the change of ovality. The residual stress induced by the explosive joint method was found to be lower than that by the mechanical roll method. The gradient of residual stress along the expanded tube was highest at the transition region (TR), and the residual stress in circumferential direction was found to be higher than the residual stress in axial direction.

Elastic Properties and Repeated Deformation Reliabilities of Stiffness-Gradient Stretchable Electronic Packages (강성도 경사형 신축 전자패키지의 탄성특성 및 반복변형 신뢰성)

  • Han, Kee Sun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.55-62
    • /
    • 2019
  • Stiffness-gradient stretchable electronic packages of the soft PDMS/hard PDMS/FPCB structure were processed using the polydimethylsiloxane (PDMS) as the base substrate and the more stiff flexible printed circuit board (FPCB) as the island substrate. The elastic characteristics of the stretchable packages were estimated and their long-term reliabilities on stretching cycles and bending cycles were characterized. With 0.28 MPa, 1.74 MPa, and 1.85 GPa as the elastic moduli of the soft PDMS, hard PDMS, and FPCB, respectively, the effective elastic modulus of the soft PDMS/hard PDMS/FPCB package was estimated as 0.6 MPa. The resistance of the stretchable packages varied for 2.8~4.3% with stretching cycles ranging at 0~0.3 strain up to 15,000 cycles and for 0.9~1.5% with 15,000 bending cycles at a bending radius of 25 mm.

Temperature-Dependent Stress Analysis of Rotating Functionally Graded Material Gas Turbine Blade Considering Operating Temperature and Ceramic Particle Size (운전온도와 세라믹 입자크기를 고려한 회전하는 경사기능성 가스터빈 블레이드의 응력해석)

  • Lee, Ki Bok;Yoo, Hong Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.193-203
    • /
    • 2014
  • Temperature-dependent stress analysis and heat transfer analysis of a rotating gas turbine blade made of functionally graded materials (FGMs) are presented considering turbine operating temperature and ceramic particle size. The material properties of functionally graded materials are assumed to vary continuously and smoothly across the thickness of the thin-walled blade. For obtaining system stiffness reflecting these characteristics, the one-dimensional heat transfer equation is applied along the thickness of the thin-walled blade for determining the temperature distribution. Using the results of the temperature analysis, the equations of motion of a rotating blade are derived with hybrid deformation variable modeling method along with the Rayleigh-Ritz assumed mode methods. The validity of the derived rotating blade model is evaluated by comparing its transient responses and temperature distribution with the results obtained using a commercial finite element code. The maximum tensile stress with operating speed and gradient index are obtained. Furthermore, the gradient index that minimizes blade temperature was investigated.

Three-dimensional numerical simulation of hydrogen-induced multi-field coupling behavior in cracked zircaloy cladding tubes

  • Xia, Zhongjia;Wang, Bingzhong;Zhang, Jingyu;Ding, Shurong;Chen, Liang;Pang, Hua;Song, Xiaoming
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.238-248
    • /
    • 2019
  • In the high-temperature and high-pressure irradiation environments, the multi-field coupling processes of hydrogen diffusion, hydride precipitation and mechanical deformation in Zircaloy cladding tubes occur. To simulate this hydrogen-induced complex behavior, a multi-field coupling method is developed, with the irradiation hardening effects and hydride-precipitation-induced expansion and hardening effects involved in the mechanical constitutive relation. The out-pile tests for a cracked cladding tube after irradiation are simulated, and the numerical results of the multi-fields at different temperatures are obtained and analyzed. The results indicate that: (1) the hydrostatic stress gradient is the fundamental factor to activate the hydrogen-induced multi-field coupling behavior excluding the temperature gradient; (2) in the local crack-tip region, hydrides will precipitate faster at the considered higher temperatures, which can be fundamentally attributed to the sensitivity of TSSP and hydrogen diffusion coefficient to temperature. The mechanism is partly explained for the enlarged velocity values of delayed hydride cracking (DHC) at high temperatures before crack arrest. This work lays a foundation for the future research on DHC.

Investigation of pile group response to adjacent twin tunnel excavation utilizing machine learning

  • Su-Bin Kim;Dong-Wook Oh;Hyeon-Jun Cho;Yong-Joo Lee
    • Geomechanics and Engineering
    • /
    • v.38 no.5
    • /
    • pp.517-528
    • /
    • 2024
  • For numerous tunnelling projects implemented in urban areas due to limited space, it is crucial to take into account the interaction between the foundation, ground, and tunnel. In predicting the deformation of piled foundations and the ground during twin tunnel excavation, it is essential to consider various factors. Therefore, this study derived a prediction model for pile group settlement using machine learning to analyze the importance of various factors that determine the settlement of piled foundations during twin tunnelling. Laboratory model tests and numerical analysis were utilized as input data for machine learning. The influence of each independent variable on the prediction model was analyzed. Machine learning techniques such as data preprocessing, feature engineering, and hyperparameter tuning were used to improve the performance of the prediction model. Machine learning models, employing Random Forest (RF), eXtreme Gradient Boosting (XGB), and Light Gradient Boosting Machine (LightGBM, LGB) algorithms, demonstrate enhanced performance after hyperparameter tuning, particularly with LGB achieving an R2 of 0.9782 and RMSE value of 0.0314. The feature importance in the prediction models was analyzed and PN was the highest at 65.04% for RF, 64.81% for XGB, and PCTC (distance between the center of piles) was the highest at 31.32% for LGB. SHAP was utilized for analyzing the impact of each variable. PN (the number of piles) consistently exerted the most influence on the prediction of pile group settlement across all models. The results from both laboratory model tests and numerical analysis revealed a reduction in ground displacement with varying pillar spacing in twin tunnels. However, upon further investigation through machine learning with additional variables, it was found that the number of piles has the most significant impact on ground displacement. Nevertheless, as this study is based on laboratory model testing, further research considering real field conditions is necessary. This study contributes to a better understanding of the complex interactions inherent in twin tunnelling projects and provides a reliable tool for predicting pile group settlement in such scenarios.

A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams

  • Bouafia, Khadra;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Benzair, Abdelnour;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.115-126
    • /
    • 2017
  • In this paper, size dependent bending and free flexural vibration behaviors of functionally graded (FG) nanobeams are investigated using a nonlocal quasi-3D theory in which both shear deformation and thickness stretching effects are introduced. The nonlocal elastic behavior is described by the differential constitutive model of Eringen, which enables the present model to become effective in the analysis and design of nanostructures. The present theory incorporates the length scale parameter (nonlocal parameter) which can capture the small scale effect, and furthermore accounts for both shear deformation and thickness stretching effects by virtue of a hyperbolic variation of all displacements through the thickness without using shear correction factor. The material properties of FG nanobeams are assumed to vary through the thickness according to a power law. The neutral surface position for such FG nanobeams is determined and the present theory based on exact neutral surface position is employed here. The governing equations are derived using the principal of minimum total potential energy. The effects of nonlocal parameter, aspect ratio and various material compositions on the static and dynamic responses of the FG nanobeam are discussed in detail. A detailed numerical study is carried out to examine the effect of material gradient index, the nonlocal parameter, the beam aspect ratio on the global response of the FG nanobeam. These findings are important in mechanical design considerations of devices that use carbon nanotubes.