• Title/Summary/Keyword: Deformation Variable

Search Result 372, Processing Time 0.031 seconds

Dynamic Stability Analysis of a Rotating Blade Considering Gravity Effect (중력의 영향이 고려된 회전 블레이드의 동적 안정성 해석)

  • Jung, Kang-Il;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1052-1057
    • /
    • 2010
  • Dynamic stability of rotating blade considering gravity effect is investigated in this paper. Equations of motion for the beam is derived by employing hybrid deformation variable method and transformed into dimensionless form. The present modeling method is verified by RecurDyn. Stability diagrams are presented to show the influence of the configuration of the beam and angular velocity on the dynamic stability by applying Floquet's theory. Since the natural frequencies are varied when the blade has rotating motion, it is found that relatively large unstable regions exist approximately 1.1 times as high as the first bending natural frequency and half of the sum of first and second bending natural frequency.

Free Vibration Analysis of a Rotating Cantilever Beam Made-up of Functionally Graded Materials (경사기능재료를 사용한 회전하는 외팔보의 진동해석)

  • Lee, Ki Bok;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.742-751
    • /
    • 2013
  • The vibration analysis of a rotating cantilever beam made-up of functionally graded materials is presented based on Timoshenko beam theory. The material properties of the beams are assumed to be varied through the thickness direction following a simple power-law form. The frequency equations, which are coupled through gyroscopic coupling terms, are calculated using hybrid deformation variable modeling along with the Rayleigh-Ritz assumed mode methods. In this study, resulting system of ordinary differential equations shows the effects of power-law exponent, angular speed, length to height ratio and Young's modulus ratio. It is believed that the results will be a reference with which other researchers and commercial FE analysis program, ANSYS can compare their results.

Motion Control of Inch-worm (이송자벌레의 운동제어)

  • Yun, Jae-Heon;Kim, Yeong-Sik;Kim, In-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.179-185
    • /
    • 2002
  • Solid state deformation of PZT is effective for the micron scale displacement. Inch-worm gets large linear displacement by incrementally summing displacements of PZT actuators. Dynamic stiffness of inch-worm is generally low compared to its driving condition due to the small size and light weight of inch-worm. Mechanical vibration induced by low stiffness may degenerate the motion accuracy of the inch-worm. In this paper, dynamic characteristics of the inch-worm are modeled by using the frequency domain curve fitting based on the experimental frequency response function. SMC (sliding mode control) is examined for motion control of the inch-worm. Simulation and experimental results show that the inch-worm with SMC scheme is feasible for the precise displacement device.

An Study of Optimization on Vehicle Body Stiffness using CAE Application (CAE를 응용한 차체강성 최적화에 관한 연구)

  • 최명진;송명준;장승호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.129-134
    • /
    • 2001
  • One of the most important purposes in the design of machines and structures is to produce the most light products of the lowest price with satisfying function and performance. In this study, a scheme of design optimization for the weight down of vehicle body structure is presented. Design sensitivity of vehicle body structure is investigated and design optimization is performed to get weight down with the allowable stiffness of body in white. Stress, deformation and natural frequencies are the constraint of the optimization.

  • PDF

A Study on the Mechanical Properties with the Strain rate and Strain for Aluminum 6061 Alloy in Hot Forging (알루미늄 6061 합금의 열간단조시 변형율속도 및 변형율에 따른 기계적 성질에 관한 연구)

  • 김정식;이영선;김용조;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.154-158
    • /
    • 2002
  • The mechanical properties of Al 6061 excluded bar were deformed in high temperature with the variable deformation conditions and characterized by the tensile test. Three types of different strain rate were experimentally performed by using hydraulic press, crank press and hammer and two types of the nominal strain 0.5 and 0.8 were achieved. To decide optimum forging process, the relationship among the strain rate, strain and mechanical properties was explained by analyzing the microstructures of the forged and heat heated parts. The strength was deeply related with the strain rate due to the dynamic recrystallization (DRX) in hot forging, and the best forging condition was presented in Al 6061 alloy.

  • PDF

Dynamic Stability Analysis of an Axially Accelerating Beam Structure (축 방향 가속을 받는 보 구조물의 동적 안정성 해석)

  • Eun, Sung-Jin;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1053-1059
    • /
    • 2005
  • Dynamic stability of an axially accelerating beam structure is investigated in this paper. The equations of motion of a fixed-free beam are derived using the hybrid deformation variable method and the assumed mode method. Unstable regions due to periodical acceleration are obtained by using the Floquet's theory. Stability diagrams are presented to illustrate the influence of the dimensionless acceleration, amplitude, and frequency. Also, buckling occurs when the acceleration exceeds a certain value. It is found that relatively large unstable regions exist around the first bending natural frequency, twice the first bending natural frequency, and twice the second bending natural frequency. The validity of the stability diagram is confirmed by direct numerical integration of the equations of motion.

Evaluation of Static/Dynamic Structural Strength for Automotive Round Recliner (자동차용 라운드 리클라이너 정적/동적 구조 강도 평가)

  • Lee Dongjae;Park Changsoo;Lee Kyoungteak;Kim Sangbum;Kim Heonyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.140-146
    • /
    • 2005
  • This study presents the development of a round recliner using the finite element method. That reduces the number of test repeating times and gives an information about stiffness. A simulation model of round recliner mounting seat module and tooth strength simulation are established using a PAM-CRASH and ABAQUS. With the optimization of gear profile, structural strength design of round recliner was achieved. The round recliner seat module simulation, structure strength simulation and a crash safety are requested by FMVSS test. Solution of round recliner optimum variable study and design problem are searched for round recliner stress, deformation and application. Also an examination of safety is made.

Behavior of Precast Prestressed Concrete Panels subjected to Blast Loading (폭발 하중을 받는 프리캐스트 프리스트레스트 콘크리트 패널의 거동 평가)

  • Kang, Joo-Won;Jo, Eunsun;Kim, Min Sook;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.95-102
    • /
    • 2015
  • The purpose of this study is to establish and examine the analytical methods based on FEA to predict the behavior of the precast prestressed concrete panels under blast loading. The precast prestressed concrete structures are on the rise, but there is little research in this regard explosion. In this paper, we set the variable to the three models. TNT 500 kg was an explosion in the standoff-distance 3m. In conclusion, the precast models damage was concentrated in the bonded portion. The concrete panels after an explosion occurred continuously deformed. But the including prestressed panels deformation occurs only at the beginning of the explosion were able to see the results.

Analysis of the fracture of brittle elastic materials using a continuum damage model

  • Costa Mattos, Heraldo S.;Sampaio, Rubens
    • Structural Engineering and Mechanics
    • /
    • v.3 no.5
    • /
    • pp.411-427
    • /
    • 1995
  • The most known continuum damage theories for brittle structures are suitable to model the degradation of the material due to the deformation process and the consequent initiation of a macro-crack. Nevertheless, they are not able to describe the propagation of the crack that leads, eventually, to the breakage of the structure into parts that undergo rigid body motion. This paper presents a theory, formulated from formal arguments of Continuum Mechanics, that may describe not only the degradation but also the fracture of elastic structures. The modeling of such a discontinuous phenomenon through a continuous theory is possible by taking a cohesion variable, related with the links between material points, as an additional degree of kinematical freedom. The possibilities of the proposed theory are discussed through examples.

Structural optimization of stiffener layout for stiffened plate using hybrid GA

  • Putra, Gerry Liston;Kitamura, Mitsuru;Takezawa, Akihiro
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.809-818
    • /
    • 2019
  • The current trend in shipyard industry is to reduce the weight of ships to support the reduction of CO2 emissions. In this study, the stiffened plate was optimized that is used for building most of the ship-structure. Further, this study proposed the hybrid Genetic Algorithm (GA) technique, which combines a genetic algorithm and subsequent optimization methods. The design variables included the number and type of stiffeners, stiffener spacing, and plate thickness. The number and type of stiffeners are discrete design variables that were optimized using the genetic algorithm. The stiffener spacing and plate thickness are continuous design variables that were determined by subsequent optimization. The plate deformation was classified into global and local displacement, resulting in accurate estimations of the maximum displacement. The optimization result showed that the proposed hybrid GA is effective for obtaining optimal solutions, for all the design variables.