• Title/Summary/Keyword: Deformation Term

Search Result 327, Processing Time 0.037 seconds

Stress Response of Cement Interface on Manufacturing Process of a Suspension Insulator (송전선용 현수애자 양생공정에서 발생하는 접착부의 응력변화)

  • Woo, Byung-Chul;Han, See-Won;Cho, Han-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1448-1450
    • /
    • 2003
  • The suspension insulators are subjected to harsh environment in service for a long time. Long term reliability of the insulators is required for both mechanical and electrical performances. We studied an analysing method to find out a deformation of brittle porcelain with a thermal expansion of simulation analysis and experimental results show that cement volume growths affect severely to be mechanical failure ageing.

  • PDF

Investigations on the Measurements of the Recording State of Optical Discs as a Electronic Recording Device (전자 기록 매체인 광디스크의 기록 상태 측정 연구)

  • Yoon, Man-Young;Yang, Jun-Seock
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.30 no.3
    • /
    • pp.77-88
    • /
    • 2012
  • In this report, we performed the measurements of physical properties of optical discs as a long term preservation electronic recording device and showed how to improve the preservation method of them. We collect the 1,993 optical discs from the archives of the National Archives of Korea and tested various measurements. We used DVDT-SD4 equipment to measure the quality of data, deformation of disc, the various writing strategy and manufacturer derives, which can be happened in optical discs by physical factors. We found that th quality of data are closely related with write strategy between discs and drives. This relation gives us information about data quality in optical discs for long term preservation that can be obtained from the state between empty discs and optical drives before recording. Thus, the initial selection of optimal discs and drives is critical for long term recording data preservation and the data quality after long time preservation will not be much different from that of the initial ones.

Long-Term Shoreline Change and Evaluation of Total Longshore Sediment Transport Rate on Hupo Beach (후포해빈에서 해안선의 장기변화 및 전연안표사량의 추정)

  • Park, Il-Heum;Lee, Young-Kweon
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.15-20
    • /
    • 2007
  • The harbor siltation by longshore sediment transports has become a serious problem on the East Coast of Korea. A reasonable prediction of the longshore sediment rate is important to approach the siltation problem effectively. In the recently developed 1-line model, the empirical constants of the sediment transport formula, which include the absolute quantity of sediment transport rate and the spatial distribution of breaking wave height by wave deformation, are treated as calibration parameters. Since these constants should be determined by the very long-term shoreline data, the longshore sediment rates are much more reasonable values. The method was applied to Hupo Beach, which has experienced heavy siltation. The authors also discuss long-term shoreline change using aerial photos and the observed wave-induced current patterns. According to the result, the SW-direction sediment transport rate was $146,892m^3/year$, and the NE direction was $2,694,450m^3/year$ at Hupo Beach for the last 11 years. The siltation in Hupo Harbor might be affected by the NE-direction sediment transport from Hupo Beach.

Tension Creep Model of Recycled PET Polymer Concrete with Flexural Loading (휨 하중을 받는 재생 PET 폴리머 콘크리트의 인장크리프 모델)

  • Chae, Young-Suk;Tae, Ghi-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.117-125
    • /
    • 2012
  • In recent years, polymer concrete based on polyester resin have been widely generalized and the research of polymer concrete have been actively pursued by the technical innovations. Polymer concrete is a composite consisting of aggregates and an organic resin binder that hardens by polymerization. Polymer concrete are stronger by a factor of three or more in compression, a factor of four to six in tension and flexural and a factor of two in impact when compared with portland cement concrete. In view of the growing use of polymer concrete, it is important to study the physical characteristics of the material, emphasizing the short term properties as well as long term mechanical behavior. If polymer concrete is to be used in flexural load-bearing application such as in beam, it is imperative to understand the deformation of the material under sustained loading conditions. This study is proposed to empirical and mechanical model of polymer concrete tension creep using long-term experimental results and mathematical development. The test results showed that proposed model has been used successfully to predict creep deformations at a stress level that was 20 percent of the ultimate strength and viscoelastic behavior of recycled-PET polymer concrete is linear of stress level up to 30 percent. It is expected that the present model allows more realistic evaluation of varying stresses in polymer concrete structures with a constant loading.

Model to Determine Long-term Allowable Strength of Geosynthetics Reinforcements Considering Strain Compatibility (변형률 적합성을 고려한 토목섬유 보강재의 장기허용강도 결정 모델)

  • Jeon, Han-Yong;Yuu, Jung-Jo;Mok, Mun-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1580-1587
    • /
    • 2005
  • To calculate the long-term allowable strength of geosynthetic reinforcement, replacement method was recommended. The isochronous creep curve by S. Turner was used to define the relation between creep strain and allowable strength. In isochronous curve at given time, one can read the allowable strength at allowable creep strain. The allowable strain gets from specification by directors or manufacturers according to the allowable displacement of reinforced structures. The allowable strength can be determined in relation to the allowable horizontal displacement each structures case by case. The effect of install damage on isochronous behaviors of geosynthetic reinforcement was little. In previous study, install damage increase the creep strain slightly. And the degradation was not identified. But it is supposed that degradation increase the creep strain. In conclusion, The recommended model to determine long-term allowable strength of geosynthetic reinforcements considering tensile deformation of reinforcement and soil is fit for proper, correct and economic design for reinforced earth walls.

  • PDF

Long-term Riverbed Change Simulation and Analisys in the River (하천의 장기 지형변화 고찰 및 하상변동 모의)

  • Hwang, Soo Deok;Choi, Seon Ho;Lee, Sang Jin;Jang, Chang Lae
    • Spatial Information Research
    • /
    • v.21 no.5
    • /
    • pp.1-6
    • /
    • 2013
  • Trying to estimate variations of the riverbed is basic and important for river management. When new dam constructed in upstream and a structure were planned, impact of the riverbed changes in downstream should be considered for stably maintained and sustained rivers in the future. In this study, long-term riverbed changes analyzed using aerial photographs in Naeseongcheon. Also applying one-dimensional numerical model, GSTARS analyzed the effects of bed deformation in critical points. Based on Changing Patterns of long-term riverbed, it is possible that after the dam was built, to explore how to manage Naeseongcheon.

Time-Temperature Superposition Behavior for Accelerated Fatigue Lifetime Testing of Polycarbonate(PC) (폴리카보네이트(PC)의 가속 피로수명 시험을 위한 시간-온도 호환성)

  • Kim Gyu-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.976-984
    • /
    • 2006
  • Time-temperature superposition has been studied to determine the long-term fatigue life over millions of cycles for glassy polymers. π le superposition is supposed to make an accelerated lifetime testing (ALT) technique possible. Dog-bone shaped specimens made of carbon filled Polycarbonate (PC) were tested under fatigue, based on the stress-lifetime approach (S-N curve). Fatigue-induced localized yield-like deformation is considered as the defect leading to fatigue and its evolution behavior is characterized by a modified energy activation model in which temperature is considered as fatigue acceleration factor. This model allows the reduced time concept to account for effects of different temperature in short-term fatigue data to determine long-term fatigue life through the use of time-temperature superposition that is applicable under a low frequency and isothermal conditions. The experimental results validated that the proposed technique could be a possible method for accelerated lifetime testing (ALT) of time-dependent polymeric materials.

Prediction of Cumulative Plastic Displacement in the Concrete Track Roadbed Caused by Cyclic Loading (반복하중에 의한 콘크리트 궤도 노반의 누적 소성 변위 예측)

  • Won, Sang-Soo;Lee, Jin-Wook;Lee, Seong-Hyeok;Jung, Young-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.52-58
    • /
    • 2014
  • Plastic deformation of roadbed influences the stability and maintenance of concrete slab track. Long-term plastic deformation in a railway roadbed is generated primarily due to accumulated inelastic strains caused by repeated passing of trains. Prediction of cumulative plastic deformation is important in cost-effective maintenance of railway tracks as well as for the safe operation of trains. In this study, the vertical displacements in railway roadbeds with different thicknesses of reinforced roadbed were computed. Parameters of the power model for cumulative plastic strain were calibrated by using the data from triaxial tests and full-scale loading tests. Results of three-dimensional finite element analyses of standard roadbed sections provide us with design guidelines for the selection of the thickness of reinforced roadbed.

Development of Continuous Ground Deformation Monitoring System using Sentinel Satellite in the Korea (Sentinel 위성기반 한반도 연속 지반변화 관측체계 개발)

  • Yu, Jung Hum;Yun, Hye-Won
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.773-779
    • /
    • 2019
  • We developed the automatic ground deformation monitoring system using Sentinel-1 satellites which is operating by European Space Agency (ESA) for the Korea Peninsula's ground disaster monitoring. Ground deformation occurring over a long-term period are difficult to monitoring because it occurred in a wide area and required a large amount of satellite data for analysis. With the development of satellites, the methods to regularly observe large areas has been developed. These accumulated satellite data are used for time series ground displacement analysis. The National Disaster Management Research Institute (NDMI) established an automation system for all processes ranging from acquiring satellite observation data to analyzing ground displacement and expressing them. Based on the system developed in this research, ground displacement data on the Korean Peninsula can be updated periodically. In the future, more diverse ground displacement information could be provided if automated small regional analysis systems, multi-channel analysis method, and 3D analysis system techniques are developed with the existing system.

Time-dependent Deformation Characteristics of Geosynthetic Reinforced Modular Block Walls under Sustained/cyclic Loading (지속하중 및 반복하중 재하시 보강토 옹벽의 잔류변형 특성)

  • Yoo, Chung-Sik;Kim, Young-Hoon;Han, Dae-Hui;Kim, Sun-Bin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.5-21
    • /
    • 2007
  • Despite a number of advantages of reinforced earth walls over conventional concrete retaining walls, there exit concerns over long-term residual deformation when they are subjected to repeated and/or cyclic loads, especially when used as part of permanent structures. In view of these concerns, in this paper time-dependant deformation characteristics of geosynthetic reinforced modular block walls under sustained anuor repeated loads were investigated using reduced-scale model tests. The results indicated that a sustained or repeated load can yield appreciable magnitude of residual deformation, and that the residual deformations are influenced not only by the loading characteristics but by the mechanical properties of geogrid. It is also found that the preloading technique can be effectively used in controlling residual deformations of reinforced soils subjected to sustained and/or repeated loads.