• Title/Summary/Keyword: Deformation Term

Search Result 323, Processing Time 0.027 seconds

Study on the Long-term Behavior of SRC Columns Considering the Differential Moisture Distribution in a Section (단면 내의 부등수분분포를 고려한 SRC 기둥의 장기거동에 관한 연구)

  • Seol Hyun-Cheol;Kim Jin-Keun;Kim Yun-Yong;Kwon Seung-Hee;Kim Han-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.109-112
    • /
    • 2004
  • It was found from the previous experimental studies that the long-term deformation of SRC columns was quite different from that of RC columns. A new approach method is needed to quantitatively predict the long-term deformation of SRC columns. In this study, the causes of the difference between the behaviors of RC and SRC columns are investigated and discussed. SRC columns exhibit a time-dependent relative humidity distribution in a cross section differently from that of RC columns due to the presence of a flange, which interferes with the moisture diffusion of concrete. This different relative humidity distribution may reduce the drying shrinkage and the drying creep in comparison with RC columns.

  • PDF

Prediction of Cryogenic- and Room-Temperature Deformation Behavior of Rolled Titanium using Machine Learning (타이타늄 압연재의 기계학습 기반 극저온/상온 변형거동 예측)

  • S. Cheon;J. Yu;S.H. Lee;M.-S. Lee;T.-S. Jun;T. Lee
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.74-80
    • /
    • 2023
  • A deformation behavior of commercially pure titanium (CP-Ti) is highly dependent on material and processing parameters, such as deformation temperature, deformation direction, and strain rate. This study aims to predict the multivariable and nonlinear tensile behavior of CP-Ti using machine learning based on three algorithms: artificial neural network (ANN), light gradient boosting machine (LGBM), and long short-term memory (LSTM). The predictivity for tensile behaviors at the cryogenic temperature was lower than those in the room temperature due to the larger data scattering in the train dataset used in the machine learning. Although LGBM showed the lowest value of root mean squared error, it was not the best strategy owing to the overfitting and step-function morphology different from the actual data. LSTM performed the best as it effectively learned the continuous characteristics of a flow curve as well as it spent the reduced time for machine learning, even without sufficient database and hyperparameter tuning.

Analytical evaluation of the influence of vertical bridge deformation on HSR longitudinal continuous track geometry

  • Lai, Zhipeng;Jiang, Lizhong;Liu, Xiang;Zhang, Yuntai;Zhou, Tuo
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.473-488
    • /
    • 2022
  • A high-speed railway (HSR) bridge may undergo long-term deformation due to the degradation of material stiffness, or foundation settlement during its service cycle. In this study, an analytical model is set up to evaluate the influence of this long-term vertical bridge deformation on the track geometry. By analyzing the structural characteristics of the HSR track-bridge system, the energy variational principle is applied to build the energy functionals for major components of the track-bridge system. By further taking into account the interlayer's force balancing requirements, the mapping relationship between the deformation of the track and the one of the bridge is established. In order to consider the different behaviors of the interlayers in compression and tension, an iterative method is introduced to update the mapping relationship. As for the validation of the proposed mapping model, a finite element model is created to compare the numerical results with the analytical results, which show a good agreement. Thereafter, the effects of the interlayer's different properties of tension and compression on the mapping deformations are further evaluated and discussed.

The Characteristics of Long-term Deformation Behavior During Tunnel Excavation in the Pyroclastic Rock (화산쇄설암 구간에서 터널 공사 중 장기변형거동 특성 연구)

  • Jang, Sukmyung;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.8
    • /
    • pp.23-28
    • /
    • 2022
  • In Korea, 70% of the land is mountainous and structures occupy a high proportion in railway and road construction. In particular, in recent years, the construction of high-speed railways and highways for high-speed driving is rapidly increasing. At the same time, the construction of tunnels is also increasing. The number of tunnel construction cases in which long-term deformation occurs after tunnel excavation is completed is increasing. The stability of these tunnel structures depends entirely on the characteristics of the rock surrounding the tunnel excavation. In the case of pyroclastic rock, which is the subject of this study, it is generally vulnerable to weathering and has a characteristic that its strength decreases over a long period of time. Tunnel design and construction planning considering the strength characteristics of pyroclastic rocks are essential. This study analyzed the cases of over-deformation that occurred at the tunnel site in the pyroclastic section. Based on this study, a plan for tunnel design and construction management in an area where pyroclastic rock exist in the future is presented.

Assessment of Combined Effect of Installation Damage and Creep Deformation of Geogrids (지오그리드의 시공 시 손상 및 크리프 변형의 복합효과 평가)

  • Cho Sam-Deok;Lee Kwng-Wu;Oh Se-Yong;Lee Do-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.153-161
    • /
    • 2005
  • A series of installation damage tests and creep tests are performed to assess the combined effect of installation damage and creep deformation far the long-term design strength of geogrid reinforcement. Three types of geogrids are used to investigate the influence of the geogrid types. From the experimental results, it is shown that installation damage and creep deformation of geogrids significantly depends on the polymer types of the geogrids and the larger the installation damage, the more the combined effect of installation damage and creep deformation. In addition, The results of this study show that the tensile strength reduction factor, RF, considering the combined effect between installation damage and creep deformation is less than that calculated by the current design practice which calculates the long-term design strength of geogrids damaged during installation by multiplying two partial safety factors, $RF_{ID}$ and $RF_{CR}$.

Prediction and Evaluation on Inequality Shortening and Long-term Deflection of High-rise Flat Plate Structure using 3D Finite Element Analysis (3차원 유한요소해석을 이용한 고층 무량판 슬래브 구조물의 부등축소량 및 장기처짐 예측 평가)

  • Shim, Hak-Bo;Park, Soon-Jeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.159-160
    • /
    • 2020
  • Flat plate structures are designed in the form of long span due to the development of construction materials and the improvement of construction technology. However, a high-rise structure of a flat plate of 50 less floors is constructed without detailed review of the inequality shortening, long-term deflection of the slab, and cracks. Therefore, it is possible to examine the case of defects in the structure due to deformation and damage of non-structures such as crack and leak, deflection of the door frame, and deformation of equipment ducts. In this study, it is a high-rise structure, and the inequality shortening and long-term deflection of the slab of the flat plate structure were evaluated through finite element analysis, and it was confirmed that prior precision analysis and correction during construction is necessary.

  • PDF

Flexure of cross-ply laminated plates using equivalent single layer trigonometric shear deformation theory

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.867-891
    • /
    • 2014
  • An equivalent single layer trigonometric shear deformation theory taking into account transverse shear deformation effect as well as transverse normal strain effect is presented for static flexure of cross-ply laminated composite and sandwich plates. The inplane displacement field uses sinusoidal function in terms of thickness coordinate to include the transverse shear deformation effect. The cosine function in thickness coordinate is used in transverse displacement to include the effect of transverse normal strain. The kinematics of the present theory is much richer than those of the other higher order shear deformation theories, because if the trigonometric term (involving thickness coordinate z) is expanded in power series, the kinematics of higher order theories (which are usually obtained by power series in thickness coordinate z) are implicitly taken into account to good deal of extent. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. The closed-form solutions of simply supported cross-ply laminated composite and sandwich plates have been obtained. The results of present theory are compared with those of the classical plate theory (CPT), first order shear deformation theory (FSDT), higher order shear deformation theory (HSDT) of Reddy and exact three dimensional elasticity theory wherever applicable. The results predicted by present theory are in good agreement with those of higher order shear deformation theory and the elasticity theory.

Long-Term Performance of Full-Scale Tiered Geogrid Reinforced Wall under Sustained Load (실대형 계단식 보강토 옹벽의 지속 하중하에서의 장기변형 거동 특성)

  • Yoo, Chung-Sik;Jung, Hye-Young;Lee, Bong-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.2
    • /
    • pp.29-38
    • /
    • 2005
  • It is essential to take consideration of long-term deformation characteristics of mechanically stabilized earth wall user sustained and repeated loads for design and construction, especially for use as part of permanent structures. This paper presents the long-term performance of a full-scale geogrid reinforced segmental retaining wall results based on the measured strains in geogrids for three years. The results indicate that the reinforcement tensile strains tend to continuously increase after wall completion with the increase being more pronounced in the reinforcement layers in the lower tier. It can be concluded that the long-term deformation should be taken in account for walls constructed as part of permanent structures for which wall deformation should be controlled.

  • PDF

Development of Explosion Model of Energetic Materials Considering Shock to Detonation Transition and Damage by External Impact (외부 충격에 의한 손상을 고려한 화약과 추진제의 폭발모델 개발)

  • Kim, Bohoon;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.97-99
    • /
    • 2012
  • A pressure-based BOIK model considering Shock to Detonation Transition(SDT) and damage due to external fragment or bullet stimuli impact on energetic materials and analytical approach for determination of free parameters are proposed. The rate of product mass fraction(${\lambda}$) consists of ignition term that represents the initiation due to shock compression and growth term that describes propagation of detonation wave and strain term representing the morphological deformation induced by external impact.

  • PDF

A Deformation Prediction of the Embankment on the Soft Clayey Foundation - A Case Study of the Sea Dike of Koheung Bay - (점성토지반에 축조한 제방의 변형추정 -고흥만 방수제 사례연구를 중심으로-)

  • 오재화;이문수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.4
    • /
    • pp.94-102
    • /
    • 1998
  • This paper aims at developing the prediction technique of the deformation for the embankment such as sea dike and shore protection relevant to reclamation project along the southern coast of the Korean Peninsula. Generally total deformation of a sea dike over clayey foundation are composed of immediate settlement, plastic deformation and consolidation settlement. Plastic deformation occurs when the ultimate bearing capacity is less than overburden pressure containing the stress increment due to the construction of an embankment. The reliable prediction of total settlement is very important since deformed final geometry of sea dike is directly connected for analysing the safety of the long-term slope failure and piping. During this study, plastic deformation, major part of deformation was analysed using the program developed by authors, whereas immediate settlement and consolidation settlement were predicted by Mochinaka and Sena's method and Terzaghi's 1-dimensional theory of consolidation respectively. In order to validate the prediction technique for the deformation, a case study of Koheung Bay reclamation works was carried out. A good agreement was obtained between observation and prediction, which means the applicability of the technique.

  • PDF