Assessment of Combined Effect of Installation Damage and Creep Deformation of Geogrids

지오그리드의 시공 시 손상 및 크리프 변형의 복합효과 평가

  • 조삼덕 (한국건설기술연구원 지반연구부) ;
  • 이광우 (한국건설기술연구원 지반연구부) ;
  • 오세용 (한국건설기술연구원 지반연구부) ;
  • 이도희 (대우건설 경의선 전동차 사무소)
  • Published : 2005.07.01

Abstract

A series of installation damage tests and creep tests are performed to assess the combined effect of installation damage and creep deformation far the long-term design strength of geogrid reinforcement. Three types of geogrids are used to investigate the influence of the geogrid types. From the experimental results, it is shown that installation damage and creep deformation of geogrids significantly depends on the polymer types of the geogrids and the larger the installation damage, the more the combined effect of installation damage and creep deformation. In addition, The results of this study show that the tensile strength reduction factor, RF, considering the combined effect between installation damage and creep deformation is less than that calculated by the current design practice which calculates the long-term design strength of geogrids damaged during installation by multiplying two partial safety factors, $RF_{ID}$ and $RF_{CR}$.

시공 시 손상 및 크리프 변형의 복합효과가 지오그리드의 장기설계인장강도에 미치는 영향을 평가하기 위하여, 세 종류의 지오그리드를 대상으로 일련의 현장 내시공성시험 및 크리프시험을 수행하였다. 연구결과, 지오그리드의 시공시 손상 및 크리프 변형 특성은 지오그리드의 재질 및 제조방법에 크게 영향을 받으며, 시공 중 지오그리드의 인장강도감소가 클수록, 시공 시 손상과 크리프 변형의 복합효과가 미치는 영향이 더 큰 것으로 나타났다. 또한 지오그리드의 인장강도 감소계수를 영향인자별로 각각 산정하여 장기설계인장강도를 평가하도록 되어 있는 현행 설계법은, 지오그리드의 시공 시 손상과 크리프 변형의 복합효과를 고려하여 강도감소계수를 산정하는 방법에 비해 지오그리드의 강도감소계수를 안전측으로 산정하는 것으로 평가되었다.

Keywords

References

  1. PWRC (2000), ジオテキスタイルを用いた補强土の設計.施工マニュアル(改訂版), 日本 土木硏究センター
  2. ASTM D 5818 (1995), Annual Book ASTM Standards. Standard Practices for Obtaining Samples of Geosynthetics from a Test Section for Assessment of Installation Damage, American Society for Testing and Materials
  3. Austin, R.A. (1997), 'The Effect of Installation Activities and Fire Exposure on Geogrid Performance', Geotextiles and Geomembranes 15, pp.367-376 https://doi.org/10.1016/S0266-1144(98)80009-5
  4. BS 8006 (1995), British Standard Institution. Code of Paractice for Strengthened/Reinforced Soils and other Fills, British Standard Institution
  5. Cazzuffi, D., Mongiovi, L. & Torresendi, M.. (2001), 'Laboratory and Field tests for the Evaluation of Installation Damage of Geosynthetics in Reinforced Earth Structures', 15th ICSMGE, Istanbul, pp.1565-1568
  6. EN ISO 10319(1993), International Organization for Standardization. Geotextiles:Wide-width tensile test, International Organization for Standardization
  7. FHWA (1996), Corrosion/Degradation of Soil Reinforcements for Mechanically Stabilized Earth Walls and Reinforces Soil Slopes, FHWA Publication No. FHWA-SA-96-072, Federal Highway Administration, Washington, D.C
  8. Greenwood, J.H. (2002), 'The Effect of Installation Damage on the Long-Term Design Strength of a Reinforcing Geosynthetic', Geosynthetics International, Vol.9, No.3, pp.247-258
  9. GRI (1995), Determination of the Long-Term Design Strength of Flexible Geogrids, GRI Test Methods GG4(b), Drexel University, USA
  10. Jeon, H.Y., Kim, S.H., & Yoo, H.K. (2002), 'Assessment of long-term performances of polyester geogrids by accelerated creep test', Polymer Testing 21, pp.489-495 https://doi.org/10.1016/S0142-9418(01)00097-6
  11. Kaliakin, V.N. & Dechasakulsom, M. (2002), 'Development of General Time-Dependent Model for Geogrids', Geosynthetics International, Vol.9, No.4, pp.319-344
  12. Pinho-Lopes, M., Recker, C., Lopes, M.L. & Muller-Rochholz, J. (2002), 'Experimental Analysis of the Combined Effect of Installation Damage and Creep of Geosynthetics - New Results', Geosynthetics-7th ICG-Delmas, pp.1539-1544
  13. Sawicki, A. (1999), 'Creep of Geosynthetic Reinforced Soil Retaining Walls', Geotextiles and Geomembranes 17, pp.51-65 https://doi.org/10.1016/S0266-1144(98)00027-2
  14. Takaku, A. (1980), 'Effect of Temperature on Creep Fracture of Polypropylene Fibers', Journal of Apllied Polymer Science, 25, pp.1861-1866 https://doi.org/10.1002/app.1980.070250905
  15. Vinogradov, G.V. and Malkin, AYa. (1980), 'Rheology of Polymers; Viscoelasticity and Flow of Polymers', Mir Publishers Moscow Springer-Verlag Berlin Heidelberg New York, pp.74-82
  16. Watn, A. and Chew, S.H. (2002), 'Geosynthetic Damage - from Laboratory to Field', Geosynthetics-7th ICG-Delmas, pp.1203-1226