• Title/Summary/Keyword: Deformation Hardening

Search Result 392, Processing Time 0.021 seconds

Prediction of High Temperature Plastic Deformation Variables on Al 6061 Alloy (Al 6061 합금의 고온 소성변형 조건의 예측)

  • 김성일;정태성;유연철;오수익
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.576-582
    • /
    • 1999
  • The high temperature behavior of Al 6061 alloy was characterized by the hot torsion test in the temperature ranges of 400∼550℃ and the strain rate ranges of 0.05∼5/sec. To decide optimum deformation condition, three types of deformation maps were individually made from the critical strain (εc). deformation resistance(σp) and deformation efficiency (η). The critical strain(εc) for dynamic recrystallization (DRX) which was decided from the inflection point of strain hardening rate(θ) - effective stress (σ) curve was about 0.65 times of peak strain (εp). The relationship among deformation resistance (peak stress, σp), strain rate (ε), and temperature (T) could be expressed by ε=2.9×1013[sinh(0.0256σp]7.3exp (-216,000/RT). The deformation efficiency (η)which was calculated on the basis of the dynamic materials model (DMM) showed high values at the condition of 500∼550℃, 5/sec for 100% strain. The results from three deformation maps were compared with microstructures. The best condition of plastic deformation could be determined as 500℃ and 5/sec.

  • PDF

A Study on Thermal Ratcheting Structure Test of 316L Test Cylinder (316L 시험원통의 열라체팅 구조시험에 관한 연구)

  • Lee, H.Y.;Kim, J.B.;Koo, G.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.243-249
    • /
    • 2001
  • In this study, the progressive inelastic deformation, so called, thermal ratchet phenomenon which can occur in high temperature liquid metal reactor was simulated with thermal ratchet structural test facility and 316L stainless steel test cylinder. The inelastic deformation of the reactor baffle cylinder can occur due to the moving temperature distribution along the axial direction as the hot free surface moves up and down under the cyclic heat-up and cool-down of reactor operations. The ratchet deformations were measured with the laser displacement sensor and LVDTs after cooling the structural specimen which experiences thermal load up to $550^{\circ}$ and the temperature differences of about $500^{\circ}C$. During structural thermal ratchet test, the temperature distribution of the test cylinder along the axial direction was measured from 28 channels of thermocouples and the temperatures were used for the ratchet analysis. The thermal ratchet deformation analysis was performed with the NONSTA code whose constitutive model is nonlinear combined kinematic and isotropic hardening model and the test results were compared with those of the analysis. Thermal ratchet test was carried out with respect to 9 cycles of thermal loading and the maximum residual displacements were measured to be 1.8mm. It was shown that thermal ratchet load can cause a progressive deformation to the reactor structure. The analysis results with the combined hardening model were in reasonable agreement with those of the tests.

  • PDF

Derivation of work-hardening exponent through indentation contact detph analysis (압입접촉깊이 분석을 통한 가공경화지수의 유도)

  • Jeon, Eun-Chae;Ahn, Jeong-Hoon;Choi, Yeol;Kwon, Dong-Il
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.523-528
    • /
    • 2001
  • In this study we tried to determine the work-hardening exponent using continuous indentation test. Work-hardening exponent, which was determined by Hollomon equation, in tensile test, is an important parameter to determine plastic deformation and brittle/ductile property of materials. For using Hollomon equation, true stress and true strain were defined by indentation depth and indentation load. Using them the new equation, which is constituted by indentation depth, indentation load and work-hardening exponent, was induced. Indentation depth was calibrated because of elastic deflection and pile-up/sink-in phenomena. Work-hardening exponents of various steels derived by it showed good agreement to the results of tensile tests. In addition to experiments, FEM simulation was accomplished to investigate changes of real contact depth with materials properties changes. Through this simulation it is concluded that the real contact depth is changed by Y/E value which affect the early stage of indentation, and work-hardening exponent which the latter stage.

  • PDF

Progressive Inelastic Deformation Characteristics of Cylindrical Structure with Plate-to-Shell Junction Under Moving Temperature Front

  • Lee, Hyeong-Yeon;Kim, Jong-Bum
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.400-408
    • /
    • 2003
  • A study on the progressive inelastic deformation behavior of the 316 L stainless steel cylindrical structure with plate-to-shell junction under moving temperature front was carried out by structural test and analysis. The structural test intends to simulate the thermal ratcheting behavior occurring at the reactor baffle of the liquid metal reactor as free surface of hot sodium pool moves up and down under plant transients. The thermal ratchet load that heats the specimen up to 550$^{\circ}C$ was applied repeatedly and residual deformation was measured. The thermal ratcheting test was carried out with two types of cylindrical structures, one with plate to-shell junction and the other without the junction to investigate the effects of the geometric discontinuities on the global ratcheting deformation. The temperature distributions of the test specimens were measured and were used for the ratcheting analysis. The ratchet deformations were analyzed with the constitutive equation of the non-linear combined hardening model. The analysis results were in good agreement with those of the structural tests.

Localized Plastic Deformation in Heat-Resistant Alloy and Combined Two-Back Stress Hardening Model (내열합금 구조품에서의 국부적 소성변형과 이중후방응력 경화 모델)

  • Yun, Su-Jin;Lee, Sang-Yeun;Park, Dong-Chang;Yoon, Hyun-Gul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.82-88
    • /
    • 2011
  • In the present work, FEM analyses are carried out to investigate the fractures occurred within the structural part in the course of combustion experiment. The loss of structural integrity stems from the localized deformation and the damage induced due to a severe change in the thermal load. Moreover, the two-back stress evolution model is proposed using the Armstrong-Frederick and the Phillips' rules to depict the plastic deformation, and the continuum damage mechanics is also incorporated into the present model. It is noted that the present model is able to formulate a wide range of constitutive description with ease. The numerical results depicts that a severe strain localization and damage evolution can be obtained depending on the dominant back stress.

Prediction of Deformation Texture in BCC Metals based on Rate-dependent Crystal Plasticity Finite Element Analysis (속도의존성 결정소성 모델 기반의 유한요소해석을 통한 BCC 금속의 변형 집합조직 예측)

  • Kim, D.K.;Kim, J.M.;Park, W.W.;Im, Y.T.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.23 no.4
    • /
    • pp.231-237
    • /
    • 2014
  • In the current study, a rate-dependent crystal plasticity finite element method (CPFEM) was used to simulate flow stress behavior and texture evolution of a body-centered cubic (BCC) crystalline material during plastic deformation at room temperature. To account for crystallographic slip and rotation, a rate-dependent crystal constitutive law with a hardening model was incorporated into an in-house finite element program, CAMPform3D. Microstructural heterogeneity and anisotropy were handled by assigning a crystallographic orientation to each integration point of the element and determining the stiffness matrix of the individual crystal. Uniaxial tensile tests of single crystals with different crystallographic orientations were simulated to determine the material parameters in the hardening model. The texture evolution during four different deformation modes - uniaxial tension, uniaxial compression, channel die compression, and simple shear deformation - was investigated based on the comparison with experimental data available in the literature.

Localized Plastic Deformation in Heat-Resistant Alloy and Combined Two-Back Stress Hardening Model (내열합금 구조품에서의 국부적 소성변형과 이중후방응력 경화 모델)

  • Yun, Su-Jin;Lee, Sang-Yeun;Park, Dong-Chang;Yoon, Hyun-Gul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.272-278
    • /
    • 2011
  • In the present work, FEM analyses are carried out to investigate the fractures occurred within the structural part in the course of combustion experiment. The loss of structural integrity stems from the localized deformation and the damage induced due to a severe change in the thermal load. Moreover, the two-back stress evolution model is proposed using the Armstrong-Frederick and the Phillips' rules to depict the plastic deformation, and the continuum damage mechanics is also incorporated into the present model. It is noted that the present model is able to formulate a wide range of constitutive description with ease. The numerical results depicts that a severe strain localization and damage evolution can be obtained depending on the dominant back stress.

  • PDF

Nonlinear Anisotropic Hardening Laws for Orthotropic Fiber-Reinforced Composites (직교이방 섬유강화 복합재료의 비선형 비등방 경화법칙)

  • 김대용;이명규;정관수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.75-78
    • /
    • 2003
  • In order to describe the Bauschinger and transient behavior of orthotropic fiber-reinforced composites, a combined isotropic-kinematic hardening law based on the non-linear kinematic hardening rule was considered here, in particular, based on the Chaboche type law. In this modified constitutive law, the anisotropic evolution of the back-stress was properly accounted for. Also, to represent the orthotropy of composite materials, Hill's 1948 quadratic yield function and the orthotropic elasticity constitutive equations were utilized. Furthermore, the numerical formulation to update the stresses was also developed based on the incremental deformation theory for the boundary value problems. Numerical examples confirmed that the new law based on the anisotropic evolution of the back-stress complies well with the constitutive behavior of highly anisotropic materials such as fiber-reinforced composites.

  • PDF

Asymmetric Behavior and Springback of Transformation-Induced Plasticity (TRIP) Steels (TRIP강의 비대칭 거동과 스프링백)

  • Jun, S.;Jung, J.;Lee, H.S.;Kim, B.M.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.6
    • /
    • pp.333-340
    • /
    • 2017
  • The cyclic hardening behavior of transformation-induced plasticity (TRIP) steels shows tension-compression asymmetry known to be attributed to transformation of retained austenite into martensite during deformation. In this work, YoshidaUemori hardening model was used to represent the asymmetric hardening behavior of TRIP1180 steel. Yoshida-Uemori hardening model parameters were obtained from three sets of data: tension-compression, compression-tension, and a combination of the two. Material models were validated for U-bending and springback.

Study on the Material Parameter Extraction of the Overlay Model for the Low Cycle Fatigue(LCF) Analysis (저주기 피로해석을 위한 다층모델의 재료상수 추출에 관한 연구)

  • Kim, Sang-Ho;Kabir, S.M. Humayun;Yeo, Tae-In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.66-73
    • /
    • 2010
  • This work was focused on the material parameter extraction for the isothermal cyclic deformation analysis for which Chaboche(Combined Nonlinear Isotropic and Kinematic Hardening) and Overlay(Multi Linear Hardening) models are normally used. In this study all the parameters were driven especially based on Overlay theories. A simple method is suggested to find out best material parameters for the cyclic deformation analysis prior to the isothermal LCF(Low Cycle Fatigue) analysis. The parameter extraction was done using 400 series stainless steel data which were published in the reference papers. For simple and quick review of the parameters extracted by suggested method, 1D FORTRAN program was developed, and this program could reduce the time for checking the material data tremendously. For the application to FE code ABAQUS user subroutine for the material models was developed by means of UMAT(User Material Subroutine), and the stabilized hysteresis loops obtained by the numerical analysis were in good harmony with test results.