• 제목/요약/키워드: Deflection value

검색결과 285건 처리시간 0.025초

Effect of the restorative technique on load-bearing capacity, cusp deflection, and stress distribution of endodontically-treated premolars with MOD restoration

  • da Rocha, Daniel Maranha;Tribst, Joao Paulo Mendes;Ausiello, Pietro;Dal Piva, Amanda Maria de Oliveira;Rocha, Milena Cerqueira da;Di Nicolo, Rebeca;Borges, Alexandre Luiz Souto
    • Restorative Dentistry and Endodontics
    • /
    • 제44권3호
    • /
    • pp.33.1-33.12
    • /
    • 2019
  • Objectives: To evaluate the influence of the restorative technique on the mechanical response of endodontically-treated upper premolars with mesio-occluso-distal (MOD) cavity. Materials and Methods: Forty-eight premolars received MOD preparation (4 groups, n = 12) with different restorative techniques: glass ionomer cement + composite resin (the GIC group), a metallic post + composite resin (the MP group), a fiberglass post + composite resin (the FGP group), or no endodontic treatment + restoration with composite resin (the CR group). Cusp strain and load-bearing capacity were evaluated. One-way analysis of variance and the Tukey test were used with ${\alpha}=5%$. Finite element analysis (FEA) was used to calculate displacement and tensile stress for the teeth and restorations. Results: MP showed the highest cusp (p = 0.027) deflection ($24.28{\pm}5.09{\mu}m/{\mu}m$), followed by FGP ($20.61{\pm}5.05{\mu}m/{\mu}m$), CR ($17.62{\pm}7.00{\mu}m/{\mu}m$), and GIC ($17.62{\pm}7.00{\mu}m/{\mu}m$). For load-bearing, CR ($38.89{\pm}3.24N$) showed the highest, followed by GIC ($37.51{\pm}6.69N$), FGP ($29.80{\pm}10.03N$), and MP ($18.41{\pm}4.15N$) (p = 0.001) value. FEA showed similar behavior in the restorations in all groups, while MP showed the highest stress concentration in the tooth and post. Conclusions: There is no mechanical advantage in using intraradicular posts for endodontically-treated premolars requiring MOD restoration. Filling the pulp chamber with GIC and restoring the tooth with only CR showed the most promising results for cusp deflection, failure load, and stress distribution.

Microstructures and Mechanical Properties of Pressureless and Spark Plasma Sintered ZrO2(3 mol%Y2O3) Bodies

  • Shin, Na-Young;Han, Jae-Kil;Lee, Hae-Hyoung;Lee, Byong-Taek
    • 한국세라믹학회지
    • /
    • 제42권2호
    • /
    • pp.140-144
    • /
    • 2005
  • The microstructures and mechanical properties of Tetragonal Zirconia Polycrystals (TZP) sintered bodies, which made by pressureless and spark plasma sintering techniques, were investigated using XRD, SEM, and TEM techniques. In the spark plasma sintered samples, the TZP grains were equiaxed type including many sub-grain boundaries regardless of sintering conditions. The biaxial strength of TZP having an average of 80 nm grains in diameter was high in value with 1025 MPa, but fracture toughness showed a low value due to the absence of a fracture toughening mechanism such as transformation toughening. In the Pressureless Sintered (PLSed) samples, the grain size of TZP was strongly dependent on the sintering temperature; i.e., it gradually increased as the sintering temperature increased. The value of fracture toughness increased as the grain size increased by the stress-induced phase transformation and Borne crack deflection.

철근콘크리트 단순보의 유효 단면2차모멘트에 대한 모멘트 분포 형상의 영향 분석 (Analysis on the Influence of Moment Distribution Shape on the Effective Moment of Inertia of Simply Supported Reinforced Concrete Beams)

  • 박미영;김상식;이승배;김창혁;김강수
    • 콘크리트학회논문집
    • /
    • 제21권1호
    • /
    • pp.93-103
    • /
    • 2009
  • 철근콘크리트 휨 부재의 처짐 산정에는 일반적으로 유효 단면2차모멘트의 개념이 적용되고 있으며, 콘크리트 구조설계기준에서는 처짐의 간편한 계산을 위하여 Branson이 제안한 유효 단면2차모멘트를 부재의 전 경간에 동일하게 대표값으로 사용하고 있다. 그러나, 기준에서 제시된 유효 단면2차모멘트는 등분포하중을 전제로 제안되었으므로 다른 하중상태에서도 기준식의 정확성에 대해 검증할 필요가 있다. 따라서, 이 연구에서는 모멘트 분포 형상이 처짐 계산에 필요한 유효 단면2차모멘트에 미치는 영향을 실험적으로 검증하기 위해 콘크리트 강도와 지점에서부터 가력점까지의 거리를 주요변수로 하여 총 6개의 철근콘크리트 보 실험체를 제작하여 구조실험을 수행하고, 실험결과를 기준식 및 다른 연구자들이 제안한 식과 비교 분석하였다. 또한, 모멘트 분포형상을 고려할 수 있는 변분해석에 의한 처짐 산정 방법을 제안하였다. 실험 결과, 보의 유효 단면2차모멘트는 모멘트 분포 형상에 따라 다소 차이가 있었으나 기준식은 이를 반영하지 못한 것으로 나타났다. 이 연구에서 제안한 변분해석에 의한 처짐값과 실험값의 비율이 기준식에 비해 변동폭이 작게 나타났으며, 따라서, 모멘트 분포 형상의 영향을 고려한 부재의 처짐 산정에 유용한 방법이라고 판단된다. 그러나, 실험값과는 다소 차이가 있어 처짐 형상 함수의 개선을 통하여 이를 보완할 수 있는 추후 연구가 필요한 것으로 판단된다.

세가지 니켈 티타늄 파일의 휨과 비틀림 조건에서의 응력 분포에 관한 3차원 유한요소 연구 (STRESS DISTRIBUTION OF THREE NITI ROTARY FILES UNDER BENDING AND TORSIONAL CONDITIONS USING 3-DIMENSIONAL FINITE ELEMENT ANALYSIS)

  • 김태오;이찬주;김병민;박정길;허복;김현철
    • Restorative Dentistry and Endodontics
    • /
    • 제33권4호
    • /
    • pp.323-331
    • /
    • 2008
  • 이 연구의 목적은 세가지 니켈-티타늄 파일의 휨과 회전 조건 하에서의 응력 분포를 유한요소 모형을 이용하여 비교하는 것이다. ProFile .06/#30, ProTaper와 ProTaper Universal의 F3파일을 마이크로컴퓨터 단층촬영을 하고 reverse engineering을 통하여 세 니켈 티타늄 파일의 구조를 얻고 삼차원 유한요소모형을 제작하였다. 니켈 티타늄 합금의 비선형적인 물리적 성질을 반영하고 ABAQUS 프로그램을 이용하여 휨과 회전 조건 하에서의 기계적인 움직임을 수학적으로 예측 분석하였다. U-형태의 단면 구조를 가진 ProFile이 모형 가운데 가장 좋은 휨 성질을 나타냈다. 동일한 휨량 조건에서는 볼록한 삼각형 단면의 ProTaper가 다른 모형보다 많은 힘을 필요로 하였으며, 반면에 가장 높은 von Mises 응력은 ProTaper Universal의 단면에서 움푹 파인 부위에 집중되었다. ProFile 모형은 동일한 크기의 회전력 에 대해 가장 큰 응력 집중을 U-형 구 부위에 나타냈다. ProTaper 모형은 다른 모형에 비해 동일량을 비틀기 위해 더 많은 힘을 필요로 하였으며, 반면에, 동량의 비틀림에서는 가장 높은 von Mises 응력이 ProTaper Universal의 단면에서 움푹 파인 부위에 집중되었다.

Contact forces generated by fallen debris

  • Sun, Jing;Lam, Nelson;Zhang, Lihai;Gad, Emad;Ruan, Dong
    • Structural Engineering and Mechanics
    • /
    • 제50권5호
    • /
    • pp.589-603
    • /
    • 2014
  • Expressions for determining the value of the impact force as reported in the literature and incorporated into code provisions are essentially quasi-static forces for emulating deflection. Quasi-static forces are not to be confused with contact force which is generated in the vicinity of the point of contact between the impactor and target, and contact force is responsible for damage featuring perforation and denting. The distinction between the two types of forces in the context of impact actions is not widely understood and few guidelines have been developed for their estimation. The value of the contact force can be many times higher than that of the quasi-static force and lasts for a matter of a few milli-seconds whereas the deflection of the target can evolve over a much longer time span. The stiffer the impactor the shorter the period of time to deliver the impulsive action onto the target and consequently the higher the peak value of the contact force. This phenomenon is not taken into account by any contemporary codified method of modelling impact actions which are mostly based on the considerations of momentum and energy principles. Computer software such as LS-DYNA has the capability of predicting contact force but the dynamic stiffness parameters of the impactor material which is required for input into the program has not been documented for debris materials. The alternative, direct, approach for an accurate evaluation of the damage potential of an impact scenario is by physical experimentation. However, it can be difficult to extrapolate observations from laboratory testings to behaviour in real scenarios when the underlying principles have not been established. Contact force is also difficult to measure. Thus, the amount of useful information that can be retrieved from isolated impact experiments to guide design and to quantify risk is very limited. In this paper, practical methods for estimating the amount of contact force that can be generated by the impact of a fallen debris object are introduced along with the governing principles. An experimental-calibration procedure forming part of the assessment procedure has also been verified.

콘크리트 디스크를 이용한 혼합모드 파괴 (The Mixed Mode Fracture Using Concrete Disk)

  • 진치섭;김희성;정진호
    • 콘크리트학회논문집
    • /
    • 제12권2호
    • /
    • pp.63-69
    • /
    • 2000
  • This study investigates a new method of using a concrete disk to calculate stress intensity factor (SIF) for mixed mode cases. The results indicate that the disk method is more accurate than three point bending test (TPB) in obtaining correct SIF values for mixed mode fracture propagation. Stress intensity factors $K_{I}$ and $K_{II}$ are calculated using a center notched disk subjected to splitting load. The notch angle is calculated by finite element (FEM). Fracture toughness $K_\textsc{k}$ of the concrete is obtained from the load intensities at the initiation of crack propagation. According to the finite element analysis(FEA) and disk test, the results show that mode I and mixed mode cracks propagate toward the directions of crack face and loading point, respectively. The results from FEA with maximum stress theory compare well with the experimental date. Unlike TPB method where an accurate fracture toughness value is difficult to obtain due to the irregular shape of load deflection curve and delayed final crack propagation (following slow stable cracking). fracture toughness value is easily measured in the disk test from the crack initial load. Therefore, it is safe to conclude that disk method is more advantageous than TPB method in analyzing combined mode fracture problems.

석탄회 고형물의 파괴특성에 관한 실험적 연구 (Experiment Study for Fracture Characterist of the Ash solid)

  • 조병완;박종빈;김효원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.335-340
    • /
    • 2002
  • By the recently, Environmental pollution is serious by the highly economic growth and expansion of lively country basic industry. Especially, in case of industrial waste and life waste leaped into a pollution source. Also, research for processing of waste and recycling countermeasure is a pressing question on national dimension because it is prohibited an ocean disposal and reclamation. In this study, it looked for fracture characteristic value of recycling a coal ash to decrease environmental pollution by picky and exhaustion of natural resources and to reduce self-weight to prepare for a tall building and earthquake. So a coal ash examined to be possible to do as construction material. It achieved compressive strength test and three points bending test with initial notch depth rate and age for variables to show a basic research data. From the basis of the three points bending test, the fracture parameters - notch sensitivity, fracture energy, initial compliance were experimentally proposed. From the results of the compressive strength test, the elastic modulus was experimentally proposed. Also on the basis of the three points bending test, the fracture parameters - notch sensitivity, fracture energy, initial compliance were experimentally proposed. The results that the strength and fracture energy value are lower than concrete or mortar is described in this paper. Also, it shows that the deflection at fracture decreases as the age increases and the notch sensitivity decrease. However, it is judged to be available to construction material if research is continuously gone forward.

  • PDF

패각류를 잔골재 대체재로 사용한 철근콘크리트 기둥의 내력 및 거동에 관한 실험적 연구 (An Experimental Study on the Strength and Behavior of Reinforced Concrete Columns Containing Shells Substituted a Fine Aggregate)

  • 구해식
    • KIEAE Journal
    • /
    • 제8권3호
    • /
    • pp.69-76
    • /
    • 2008
  • This is an experimental study on the maximum load value and structural behavior of reinforced concrete columns containing shells as a substitute fine aggregate of concrete, through making reinforced concrete test columns with shells. In this study, the main factors consist of the grain sizes and the percentage of substitution of shells to fine aggregate in two kinds of water cement ratio. The results of the study showed as followed. The maximum load value decreased with increased the rate of substitution about shells and as the grain size of shells became smaller, the load values of them were somewhat changed higher but it is important that we must consider absorption rate of shells sufficiently. If we have a proper water cement ratio in column productions containing the shells, we can meet the requirement of the percentage of substitution until 30%. The deflection and deformation properties of reinforced concrete columns with shells represented typical curves like that of normal reinforced concrete. But as the failture types, they are able to make some change without being out of the fundamental graph forms. After the analyzing structural behaviors and the properties of reinforced concrete test columns containing shells, the most excellent grain size of shells represented 3.0mm and less with taking uniformly, and the percentage of practicable substitution of them to fine aggregate was about 30%.

Train-induced dynamic behavior analysis of longitudinal girder in cable-stayed bridge

  • Yang, Dong-Hui;Yi, Ting-Hua;Li, Hong-Nan;Liu, Hua;Liu, Tiejun
    • Smart Structures and Systems
    • /
    • 제21권5호
    • /
    • pp.549-559
    • /
    • 2018
  • The dynamic behaviors of the bridge structures have great effects on the comfortability and safety of running high-speed trains, which can also reflect the structural degradation. This paper aims to reveal the characteristics of the dynamic behaviors induced by train loadings for a combined highway and railway bridge. Monitoring-based analysis of the acceleration and dynamic displacement of the bridge girder is carried out. The effects of train loadings on the vertical acceleration of the bridge girder are analyzed; the spatial variability of the train-induced lateral girder displacement is studied; and statistical analysis has been performed for the daily extreme values of the train-induced girder deflections. It is revealed that there are great time and spatial variabilities for the acceleration induced by train loadings for the combined highway and railway cable-stayed bridge. The daily extreme values of the train-induced girder deflections can be well fitted by the general extreme value distribution.

섬유시트 보강 구조체의 거동에 관한 해석적 연구 (Analytical Study of Behavior on Structure Reinforced Fiber Sheet)

  • 서성탁
    • 한국산업융합학회 논문집
    • /
    • 제12권2호
    • /
    • pp.107-112
    • /
    • 2009
  • The effective reinforcement methods of structure is required to improve the durability of existing structures. Recently, the continuous fiber sheets to the concrete structures are widely used in the earthquake-proof reinforcement method. This study examines suitability and effect to concrete structure of fiber by FEM analysis. The result of analysis is as follows; All specimens occurred bending tensile failure at the middle span. Ultimate strength of specimen in the RC and reinforced RC specimen were 53.9 kN, 56.3 kN respectively and it was some low by degree 0.89, 0.82 to compare with calculated result. The deflection of specimen at the middle span occurred in approximately 0.2 mm, and did linear behavior in load 20 kN by seat reinforcement. Stiffness did not decrease by occurrence in the finer crack and reinforcement beam's flexure stiffness was increased until reach in failure. To compare calculated value and analysis value, it almost equal behavior in the elastic reign and can confirm effectiveness of analysis. Crack was distributed uniformly by reinforcement of fiber seat at failure and it do not occurred stiffness decreases.

  • PDF