• Title/Summary/Keyword: Deflection mode

Search Result 292, Processing Time 0.033 seconds

Investigation for Collapse Mode of Stiffened Curved Plate with Tee Shaped Stiffeners (티(Tee)형(型) 보강재로 보강된 곡판의 붕괴모드에 대한 검토)

  • Oh, Young-Cheol;Kim, Kyung-Tak;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.3
    • /
    • pp.295-300
    • /
    • 2011
  • Ship are a box-shaped structure. It is used often fore and aft parts, bilge strake, deck with camber of ship structures. When this structure is compared with flat plate structure, it different to behaviour. Generally, if it subjected to axial compressive load, ultimate strength depend on the change of curvature. Also, In this paper, stiffened curved plate with 1/2+1+1/2 bay model subjected to compressive load carried out the elasto-plastic large deflection series analysis. and parameter effect considered slender ratio, web height/thickness as well as change of curvature and investigated collapse mode for analysis model.

Static and Dynamic Weak Point Analysis of Spindle Systems Using Bending Curve (굽힘곡선을 이용한 공작기계 주축의 정적 동적 취약부 규명)

  • 이찬홍;이후상
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.188-193
    • /
    • 1998
  • This paper describes static and dynamic weak point analysis of spindle systems to eliminate high concentrated bending point on spindle and improve total stiffness of spindle systems. The weak point analysis is based on the evaluation of bending curves of spindles. For static weak point analysis the bending curve is derived from static deflection curve and for dynamic weak point analysis it is derived from the mode shape curves in consideration of the transfer function at exciting point. The validity of the weak point search methodology is verified by comparison of the static deflection, the natural frequency and the dynamic compliance between the original and the improved spindle.

  • PDF

Design of a large deflection 2 DOF scanning mirror using an electromagnetic force (전자기력을 이용한 대변위 구동 2축 스캐닝 미러의 설계)

  • Lee, Kyoung-Gun;Jang, Yun-Ho;Yoo, Byung-Wook;Jin, Joo-Young;Lim, Yong-Geun;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.181-182
    • /
    • 2008
  • In this paper, we present the design of an electromagnetic scanning mirror with rotated serpentine springs. We considered three types of torsional springs: simple beam springs (SBS), classic serpentine springs (CSS), and rotated serpentine springs (RSS). The analysis was done for an electrical resistance, differences in the mode-frequency, and resonances regarding to spring thickness. Electromagnetic coils under the mirror plate were also analyzed for power consumption and the mechanical deflection. From the analysis result, RSS and electromagnetic coils were designed for the silicon scanning mirror.

  • PDF

Tests of concrete slabs reinforced with CFRP prestressed prisms

  • Liang, Jiongfeng;Yu, Deng;Yang, Zeping;Chai, Xinjun
    • Computers and Concrete
    • /
    • v.18 no.3
    • /
    • pp.355-366
    • /
    • 2016
  • This paper reports the testing of concrete slabs reinforced with CFRP prestressed concrete prisms(PCP) on the flexural behavior. Four concrete slabs were tested, a reference slab reinforced with steel bars, and three slabs reinforced with CFRP prestressed concrete prisms (PCP). All slabs were made with dimensions of 600mm in width, 2200mm in length and 150 in depth. All concrete slabs reinforced with CFRP prestressed concrete prisms(PCP) exhibited CFRP bar rupture failure mode. It was shown that the application of the CFRP prestressed prisms can limit service load deflections and crack width, the increased level of prestress in the CFRP prestressed prism positively affected the maximum crack width. The deflection of concrete slabs reinforced with CFRP prestressed prisms decreased as prestress in the CFRP prestressed prism increased.

A Study on the Secondary Buckling Behavior of Ship Plate (선체판부재의 2차좌굴거동에 관한 연구)

  • 고재용
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.1
    • /
    • pp.47-58
    • /
    • 1996
  • The use of high tensile steel plates is increasing in the fabrication of ship and offshore structures. The main portion of ship structure is usually composed of stiffened plates. In these structures, plate buckling is one of the most important design criteria and buckling load may usually be obtained as an eigenvalue solution of the governing equations for the plate. To use the high tensile steel plate effectively, its thickness may become thin so that the occurrence of buckling is inevitable and design allowing plate buckling may be necessary. When the panel elastic buckling is allowed, it is necessary to get precise understandings about the post-buckling behaviour of thin plates. It is well known that a thin flat plate undergoes secondary buckling after initial buckling took place and the deflection of the initial buckling mode was developed. From this point of view, this paper discusses the post-buckling behaviour of thin plates under thrust including the secondary buckling phenomenon. Series of elastic large deflection analyses were performed on rectangular plates with aspect ratio 3.6 using the analytical method and the FEM.

  • PDF

Flexural Behavior of Concrete Beams Reinforced with GFRP Bars (GFRP 보강근을 사용한 콘크리트 보의 휨파괴 거동)

  • Ha Sang Hoon;Kim Jung Kyu;Hwang Keum Sik;Eo Seok Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.339-342
    • /
    • 2005
  • This paper presents flexural test results of concrete beams reinforced with GFRP and conventional steel reinforcement for comparison. The beams were tested under static loading to investigate the effects of reinforcement ratio and compressive ,strength of concrete on cracking, deflection, ultimate capacity and mode of failure, This study attempts to establish a theoretical basis for the development of simple and rational design guideline. Test results show that ultimate capacity increases as the reinforcement ratio and concrete strength increase. The ultimate capacity increased up to $8\%-25\%$ by using high strength concrete. The deflection at maximum load of GFRP reinforced beams was about three times that of steel reinforced beams. For GFRP-reinforced beams, the ACI code 440 design method resulted in conservative flexural strength -estimates.

  • PDF

The Vibration Control of Flexible Manipulator using A Reference Trajectory Command and Fuzzy Controller

  • Park, Yang-Su;Kang, Jeng-Ho;Park, Yoon-Myung;Cho, Yong-Gab
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.67.3-67
    • /
    • 2001
  • A fuzzy control strategy is described which is utilized to control the joint angle and tip deflection in single flexible manipulator. In this paper, an existing model for a single flexible manipulator is used f3r the initial development of an FLC. One FLC is designed to govern the joint angle of the manipulator as it is rotated from one position to another, and a second FLC is designed to attenuate the tip deflection which result from joint angle body motion. Reference Trajectory Command is an important method to reduce vibration in flexible beam. This paper presents a very simple command control shaping which eliminates multiple mode residual vibration in a flexible beam combined fuzzy controller ...

  • PDF

Finite Element Analysis of Air Springs with Fiber-Reinforced Rubber Composites Using 3-D Shell Elements (3차원 셸 요소를 이용한 섬유보강 고무모재 공기 스프링의 유한요소해석)

  • Lee, Hyoung-Wook;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.602-609
    • /
    • 2001
  • This paper is concerned with the orthotropic problem of diaphragm-type air springs which consist of rubber linings, nylon reinforced rubber composite and bead ring. The analysis is carried out with a finite element method developed to consider the orthotropic properties, geometric nonlinearity using four-node degenerated shell element with reduced integration. Physical stabilization scheme is used to control the zeroenergy mode of the element. The analysis includes an inflation analysis and a lateral analysis of an air spring for the deformed shape and the spring load with respect to the vertical and l ateral deflection. Numerical results demonstrate the variation of the outer diameter, the fold height, the vertical force and the lateral force with respect to the inflation pressure and the lateral deflection.

Dynamic Behavior of a Timoshenko Beam with a Crack and Moving Masses (크랙과 이동질량을 가진 티모센코 보의 진동특성)

  • 안성진;손인수;윤한익
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.799-804
    • /
    • 2004
  • In this paper a dynamic behavior of simply supported cracked simply supported beam with the moving masses is presented. Based on the Timoshenko beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics the of. And the crack is assumed to be in th first mode of fracture. As the depth of the crack and velocity of fluid are increased the mid-span deflection of the pipe conveying fluid with the moving mass is increased. As depth of the crack is increased, the effect that the velocity of the fluid on the mid-span deflection appeals more greatly.

  • PDF

Free Vibrations of Orthotropic Plates with Variable Thickness (가변 두께를 갖는 직교이방성 평행사변형판의 자유진동 해석)

  • Heo, Cheol-Weon;Moon, Duk-Hong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.1
    • /
    • pp.49-57
    • /
    • 1986
  • The vibrations problem of thin orthotropic skew plates of linearly varying thickness is analyzed using the small deflection theory of plates. Using dimensionless oblique coordinates, the deflection surface can be expressed as a polyonmial series satisfying the boundary conditions. For orthotropic plates which is clamped on all the four edges, numerical results for the first two natural frequencies are presented for various combinations of aspect ratio, skew angle and taper parameter. The properties of material used are one directional glass fibre reinforced plastic GFRP. The results obtained may be summarised as follows: 1. In case of the first mode vibration of plates with increase in the skew angle, the natural frequencies of plates decrease. 2. As the aspect ratio decrease, the natural frequencies of plates decrease. 3. For the identical skew angle, natural frequencies of plates increase with the taper parameter of thickness.

  • PDF