• 제목/요약/키워드: Deflection due to slip

검색결과 11건 처리시간 0.021초

아이부를 갖지 않고 자유고가 큰 겹판스프링의 특성해석 (The Characteristic Analysis of Leaf Springs with Large Free Camber and without Spring Eye)

  • 최선준;권혁홍;최재찬
    • 한국정밀공학회지
    • /
    • 제12권5호
    • /
    • pp.88-97
    • /
    • 1995
  • The leaf spring is used in the suspension of most buses and trucks due to its compactness, which reduces the shock-force and the vibration from the road, and increases passenger comfortability and carlife. Of the various kinds of leaf springs, the leaf spring without eyes can be found easily in the heavy duty truck, and has different characteristics to the leaf spring with eyes in the case of large free camber. Because of radius change, the leaf without eyes slips on the supports, which makes the deflection. The difference is due to this deflection. In this paper, we show the general method of characteristic analysis, for example, Pandan method, can be no more applicable to these springs. Thus considering the geometry deflection by slip, we have developed the equation of the characteristic of the leaf spring without eyes and prove the effectiveness of this equation by experiment. From the result, at large camber the slip deflection is large and as camber smaller, this is smaller. At the camber behind some value, the effect of slip no longer influence to the characteristic of leaf springs.

  • PDF

매립형 불완전 합성보의 휨 거동 예측 (Flexural Behavior of Encased Composite Beams with Partial Shear Interaction)

  • 허병욱;배규웅;문태섭
    • 한국강구조학회 논문집
    • /
    • 제16권6호통권73호
    • /
    • pp.747-757
    • /
    • 2004
  • 강-콘크리트 합성보에서 강과 콘크리트 사이의 불완전 합성거동은 완전 합성보에 비해서 처짐이 매우 증가하게 된다. 특히, 춤이 깊은 데크 및 속 빈 PC슬래브 등을 사용한 매립형 합성보의 경우, 자체의 형상에 기인하여 처짐에 매우 취약하다. 본 연구에서는 기존 연구에서 유도한 슬립효과를 고려한 처짐 계산법 및 실험으로부터 구한 하중-슬립 관계로부터 매립형 합성보의 전단부착응력 및 슬립에 의한 추가 처짐 값을 제시하였다. 매립형 합성보의 처짐에 미치는 슬립의 영향은 완전 합성보의 강성 값에 비해 약 30%정도 감소함을 알 수 있었다. 또한, 실험 및 예측 값의 비교결과, 6%내외의 오차로 비교적 좋은 결과를 나타내었다.

Joint stress based deflection limits for transmission line towers

  • Gayathri, B.;Ramalingam, Raghavan
    • Steel and Composite Structures
    • /
    • 제26권1호
    • /
    • pp.45-53
    • /
    • 2018
  • Experimental investigations have revealed significant mismatches between analytical estimates and experimentally measured deflections of transmission towers. These are attributed to bolt slip and joint flexibility. This study focuses on effects of joint flexibility on tower deflections and proposes criterions for permissible deflection limits based on the stresses in joints. The objective has been framed given that guidelines are not available in the codes of practices for transmission towers with regard to the permissible limits of deflection. The analysis procedure is geometric and material nonlinear with consideration of joint flexibility in the form of extension or contraction of the cover plates. The deflections due to bolt slip are included in the study by scaling up the deflections obtained from analysis by a factor. Using the results of the analysis, deflection limits for the towers are proposed by limiting the stresses in the joints. The obtained limits are then applied to a new full scale tower to demonstrate the application of the current study.

매시브콘크리트에 배근된 주철근의 부착특성에 관한 해석적 연구 (An Analytical Study on the Bond-Properties of Axial Bars Embedded in Massive Concrete)

  • 장일영;이호범;이승훈;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.143-147
    • /
    • 1992
  • Description of the behavior of the R.C structural members fixed on massive concrete is not normally generalization of recognized configuration for regular R.C. design guidanes. This can be due to the complexity of evaluation of internal resistancy and deflection changes of the members subjected to the various external forces. On the base of axially loaded member fixed on footing, however, the estimation of deflection changes due to flexural force shear force and rotational force is to be carried out in ways of specifying the bond characteristics of axial bars embedded in massive concrete. This work is to quantify adhesion of steel-concrete, initial concrete cracking stress near bar rib, maximum bond stress and residual stress in concrete respectively. In addition to quantification of them for particulate behavior, the suggestions of multi-linear bond stress-slip diagram made in carrying out finite element analyses for adhesion failure, examining concrete cracking status and reviewing existing experimental data lead to alternatively constructed relationship between bond stress and slip for a axial bars embedded massive concrete.

  • PDF

석고 몰드에서 용출된 Ca이 주입성형 알루미나 소결체의 미세구조 및 파괴인성에 미치는 영향 (Effects of Dissolved Ca from Plaster Mold During Slip Casting on the Microstructure and Fracture Toughness of Sintered Alumina)

  • 박재관;임동기;김인태;김윤호
    • 한국세라믹학회지
    • /
    • 제28권12호
    • /
    • pp.1019-1025
    • /
    • 1991
  • The effect of dissolved Ca ion from plaster mold during slip casting on the microstructure and fracture toughness of high-purity sintered alumina were investigated. When the alumina slip containing 1000 ppm MgO was casted on a calcined alumina mold, the sintered compact had a homogeneous microstructure with equiaxed grains. However, when the same slip was casted on a plaster mold, the sintered compact consisted of the mixture of equiaxed and elongated grains. This inhomogeneous microstructure was also observed in the sintered alumina doped with 100o ppm MgO and 100 ppm CaO whose compact was prepared on the calcined alumina mold indicating that the inhomogeneity was caused by CaO. It was found that the specimen containing both MgO and CaO had higher fracture toughness than that containing MgO only. The enhanced fracture toughness by CaO is probably due to the crack deflection along the boundaries of the elongated grains.

  • PDF

Effect of stud corrosion on stiffness in negative bending moment region of steel-concrete composite beams

  • Yulin Zhan;Wenfeng Huang;Shuoshuo Zhao;Junhu Shao;Dong Shen;Guoqiang Jin
    • Steel and Composite Structures
    • /
    • 제48권1호
    • /
    • pp.59-71
    • /
    • 2023
  • Corrosion of the headed studs shear connectors is an important factor in the reduction of the durability and mechanical properties of the steel-concrete composite structure. In order to study the effect of stud corrosion on the mechanical properties in the negative moment region of steel-concrete composite beams, the corrosion of stud was carried out by accelerating corrosion method with constant current. Static monotonic loading was adopted to evaluate the cracking load, interface slip, mid-span deflection, and ultimate bearing capacity of four composite beams with varying corrosion rates of headed studs. The effect of stud corrosion on the stiffness of the composite beam's hogging moment zone during normal service stage was thoroughly examined. The results indicate that the cracking load decreased by 50% as the corrosion rate of headed studs increase to 10%. Meanwhile, due to the increase of interface slip and mid-span deflection, the bending stiffness dropped significantly with the same load. In comparison to uncorroded specimens, the secant stiffness of specimens with 0.5 times ultimate load was reduced by 25.9%. However, corrosion of shear studs had no obvious effect on ultimate bending capacity. Based on the experimental results and the theory of steel-concrete interface slip, a method was developed to calculate the bending stiffness in the negative bending moment region of composite beams during normal service stage while taking corrosion of headed studs into account. The validity of the calculation method was demonstrated by data analysis.

4경간 현수교에서의 중앙주탑 휨강성의 영향 (Effects of Flexural Rigidity of Center Tower in Four-Span Suspension Bridges)

  • 권순길;유훈;최동호
    • 대한토목학회논문집
    • /
    • 제34권1호
    • /
    • pp.49-60
    • /
    • 2014
  • 해협횡단 교량으로서 적용사례가 증가될 것으로 예상되는 다경간 현수교에 대한 거동을 간략하면서도 정확히 해석하기 위하여, 현수교에 대한 고유의 해석이론인 처짐이론 해석방법을 사용할 수 있다. 본 연구에서는 처짐이론 방법을 이용한 4경간 현수교의 구조해석을 수행하였다. 거더를 축인장력을 받는 단순보로 고려하였고, 연직방향 하중 및 지점부 모멘트에 의한 단순보의 수직변위를 산정하여, 이 변위가 케이블의 적합방정식을 만족할 때까지 반복해석을 수행하였다. 유한요소해석의 결과와 비교하여 모든 주탑의 휨강성을 고려하는 처짐이론 해석의 결과를 검증하고, 주케이블과 탑정부 간의 구속조건 변화에 따른 다양한 케이블 적합방정식을 이용하여, 4경간 현수교에서의 주탑 휨강성의 중요성을 확인하였다. 또한 중앙주탑 휨강성의 변화에 따른 간단한 변수해석을 수행하여 그에 따른 거동을 파악하였다.

토목섬유로 보강된 아스팔트 포장의 RBSN 해석 모델 (RBSN Analysis Model of Asphalt Pavement Retrofitted with Civil Fiber)

  • 한상훈;곽소신;권용길;홍기남
    • 한국안전학회지
    • /
    • 제25권2호
    • /
    • pp.47-54
    • /
    • 2010
  • This paper presents a simple and efficient two-dimensional rigid-body-spring network model able to accurately estimate the fractural behavior of civil fiber reinforced pavements. The proposed rigid-body-spring network model, denoted as RBSN model, considers civil fiber reinforcing materials using the beam elements and link spring elements. The RBSN method is able to model collapse due to asphalt crushing and civil fiber slip. The RBSN model is used to predict the applied load-midspan deflection response of civil fiber retrofitted asphalt specimen subjected to the three-point bending. Numerical simulations and experimental measurements are compared to based on tests available in the literature. The numerically simulated responses agree significantly with the corresponding experimental results until the maximum load. However, It should be mentioned that, in order to more accurately predict the postpeak flexural behavior of the civil fiber retrofitted asphalt pavement, development of the advanced model to simulate the slip relationship between civil fiber and asphalt is required.

Experimental assessment on flexural behavior of demountable steel-UHPC composite slabs with a novel NPR steel plate

  • Jin-Ben Gu;Jun-Yan Wang;Yi Tao;Qing-Xuan Shi
    • Steel and Composite Structures
    • /
    • 제49권4호
    • /
    • pp.381-392
    • /
    • 2023
  • This study experimentally investigates the flexural behavior of steel-UHPC composite slabs composed of an innovative negative Poisson's ratio (NPR) steel plate and Ultra High Performance Concrete (UHPC) slab connected via demountable high-strength bolt shear connectors. Eight demountable composite slab specimens were fabricated and tested under traditional four-point bending method. The effects of loading histories (positive and negative bending moment), types of steel plate (NPR steel plate and Q355 steel plate) and spacings of high-strength bolts (150 mm, 200 mm and 250 mm) on the flexural behavior of demountable composite slab, including failure mode, load-deflection curve, interface relative slip, crack width and sectional strain distribution, were evaluated. The results revealed that under positive bending moment, the failure mode of composite slabs employing NPR steel plate was distinct from that with Q355 steel plate, which exhibited that part of high-strength bolts was cut off, part of pre-embedded padded extension nuts was pulled out, and UHPC collapsed due to instantaneous instability and etc. Besides, under the same spacing of high-strength bolts, NPR steel plate availably delayed and restrained the relative slip between steel plate and UHPC plate, thus significantly enhanced the cooperative deformation capacity, flexural stiffness and load capacity for composite slabs further. While under negative bending moment, NPR steel plate effectively improved the flexural capacity and deformation characteristics of composite slabs, but it has no obvious effect on the initial flexural stiffness of composite slabs. Meanwhile, the excellent crack-width control ability for UHPC endowed composite members with better durability. Furthermore, according to the sectional strain distribution analysis, due to the negative Poisson's ratio effect and high yield strength of NPR steel plate, the tensile strain between NPR steel plate and UHPC layer held strain compatibility during the whole loading process, and the magnitude of upward movement for sectional plastic neutral axis could be ignored with the increase of positive bending moment.

주형과 상판과의 상호작용이 단순 사교의 동적거동에 미치는 영향 (Effects of Interactions between the Concrete Deck and Steel Girders on the Dynamic Behavior of Simply Supported Skew Bridges)

  • 문성권
    • 한국전산구조공학회논문집
    • /
    • 제20권5호
    • /
    • pp.593-604
    • /
    • 2007
  • 합성형 사교는 비합성형 사교에 비해 역학적 측면에서 큰 장점을 지니고 있는 것이 사실이지만 사각이 심한 사교들의 경우 합성형 사교에 매우 큰 상판응력이 유발될 가능성이 있어 종종 이들 사교들에 대한 비합성형 설계가 검토되어지곤 한다. 본 연구에서는 동적해석이 가능한 비합성형 사교의 해석모델을 제안하고 이 해석모델들을 이용하여 사교들에 대한 비합성형의 적용 타당성을 검토하였다. 또한 주형과 상판과의 세 가지 상호작용(합성작용, 부분합성작용, 비합성작용)이 단순 판형사교들의 동적특성과 동적거동에 미치는 영향을 조사하였다. 주형간격, 사각, 상판 종횡비를 매개변수로 총 27개의 판형 사교들에 대한 일련의 연구를 수행하였다. 상판과 주형 경계면에서의 미끄러짐은 고유진동주기가 길어지는 현상을 유발하여 사교의 교축직각방향에 작용하는 전체밑면전단력의 크기를 감소시킬 수도 있지만 모드형장과 강성분포에 큰 영향을 미쳐 바람직하지 않은 사교 거동을 유발할 수도 있다. 부분합성작용의 최소 규정에 따라 설치된 전단연결재는 주형응력과 상판응력을 감소시키는 효과가 있다. 즉, 몇몇 사교의 경우를 제외하고는 전반적으로 부분합성형으로부터 구한 주형응력과 상판응력의 크기는 합성형 사교로부터 구한 관련 응력들의 크기와 유사하거나 약간 크게 나타난다.