• 제목/요약/키워드: Deflection angle

검색결과 298건 처리시간 0.025초

엔드밀 가공에서 푸리에 급수를 이용한 절삭력 및 공구변형 표현 (Representation of cutting forces and tool deflection in end milling using Fourier series)

  • 류시형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.781-785
    • /
    • 2005
  • Cutting forces and tool deflection in end milling are represented as the closed form of tool rotational angle and cutting conditions. The discrete cutting forces caused by tool entry and exit are continued using the Fourier series expansion. Tool deflection is predicted by direct integration of the distributed loads on cutting edges. Cutting conditions, tool geometry, run-outs and the stiffness of tool clamping pan are considered for cutting forces and tool deflection estimation. Compared to numerical methods, the presented method has advantages in short prediction time and the effects of feeding and run-outs on cutting forces and tool deflection can be analyzed quantitatively. This research can be effectively used in real time machining error estimation and cutting condition selection for error minimization since the ferm accuracy is easily predicted by tool deflect ion curve.

  • PDF

간섭 거동에 따른 지하 가스 배관의 영향선 분석 (Analysis of the Critical Path of Underground Gas Pipe According to Interference Behavior)

  • 김미승;원종화;김문겸;김태민;최선영
    • 한국가스학회지
    • /
    • 제13권2호
    • /
    • pp.7-13
    • /
    • 2009
  • 관망 내 배관의 간섭 거동에 따른 지하 매설 배관의 영향선 분석을 위하여 실제 환경에 부합 하도록 지하의 상부와 하부에 각각 하수관거와 가스관을 매설하여 유한요소모델을 구현하였으며, 두 배관의 교차 정도에 따라 하부 가스 배관의 영향선을 분석하였다. 하수관거와 가스관은 각각 1.0m와 3.39m의 매설심도를 가지며, 두 배관이 이루는 교차각은 $0{\sim}90^{\circ}$에 대하여 해석을 실시하였다. 본 연구에서는 Ring Deflection과 Bending Stress의 결과로부터, 교차각에 따른 영향선을 분석하였으며, 그 결과 두 배관이 이루는 교차각과 하부 배관의 영향선은 일치함을 알 수 있었다. 따라서 배관의 간섭 거동에 따른 하부 배관의 영향선은 두 배관의 교차각과 깊은 관계가 있다고 판단된다.

  • PDF

직물의 평면 드레이프 계수와 측면 드레이프 계수와의 관계 (Relationship between Plane and Side Drape Coefficient of Fabrics)

  • 서정권;이정욱
    • 한국의류학회지
    • /
    • 제20권3호
    • /
    • pp.519-526
    • /
    • 1996
  • To investigate the relationship between plane and side drape coefficient, the drape tester designed in which coordinate of projected outline of draped specimen could be recorded. By using this drape tester, the three dimensional shape, plane and side drape coefficient were obtained from coordinate of plane projected shape, and furthermore examined the tendency in changes of drape coefficient in terms of diameter of specimen, deflection angle, and bending rigidity. The side drape coefficients were constant regardless of changes in diameter of specimen. The plane drape coefficients, however, made a little difference according to changes in diameter of specimen. The experimental drape coefficient agreed well with the theoretical drape coefficient according to deflection angle. In the meanwhile, when the plane drape coefficients were regressed with the side drape coefficents, regression equation was $y=0.375x-0.002x^2+6.9\times10^{-5}x^3$. When the $\overline{\theta_s}$ is mean of deflection angle of selected points which have the longest and shortest distance from center point in the node, the theoretical drape coefficient calculated from $\overline{\theta_s}$ has high correlation with experimental drape coefficient. The plane and side drape coefficient changed linearly with increasing the bending length, $\sqrt[3]{EI/w}$.

  • PDF

회피 기동에 강인한 수상 항적 탐색 방법 (Robust Ship Wake Search Method in the Target Evasion Environment)

  • 구본화;이영현;박정민;정석문;홍우영;김우식;임묘택;고한석
    • 한국군사과학기술학회지
    • /
    • 제12권1호
    • /
    • pp.8-17
    • /
    • 2009
  • This paper proposes robust ship wake search method in the target evasion environment. Moving surface ships generate a long trailing wake in the rear of a surface ship. Wake homing torpedo sensing this wake can detect the surface target and engage it automatically. In wake homing torpedo, wake search method is important element to maximize effectiveness of wake homing torpedo. This paper proposes one-side, two-side and centering mode according to passing wake boundary scenarios. Also, wake deflection angle is deduced by using the principle of deflection angle of acoustic torpedo. The representative experimental results using monte-carlo simulation demonstrate that the searching method using one-side mode is superior to two-side and centering mode in the target evasion environment.

터빈블레이드의 5축 고속가공에서 최적가공경로의 선정 (Evaluation of Cutter Orientations in 5-Axis High Speed Milling of Turbine Blade)

  • 임태순;이채문;김석원;이득우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.53-60
    • /
    • 2002
  • Recently, the development of aerospace and automobile industries brought new technological challenges, related to the growing complexity of products and new geometry models. High speed machining using 5-Axis milling machine is widely used for 3D sculptured surface parts. 5-axis milling of turbine blade generates the vibration, deflection and twisting caused from thin and cantilever shape. So, the surface roughness and the waviness of workpiece are not good. In this paper, The effects of cutter orientation and lead/tilt angle in 5-Axis high speed ball end-milling of turbine blade were investigated to improve the geometric accuracy and surface integrity. The experiments were performed at lead/tilt angle $15^{\circ}$ of workpiece with four cutter directions such as horizontal outward, horizontal inward, vertical outward, and vertical inward. Workpiece deflection, surface roughness and machined surface were measured with various cutter orientations such as cutting direction, and lead/tilt angle. The results show that when 5-axis machining of turbine blade, the best cutting strategy is horizontal inward direction with tilt angle. The results show that when 5-axis machining of turbine blade, the best cutting strategy is horizontal inward direction with tilt angle.

  • PDF

Class 1000 클린룸에서 편류 개선에 관한 연구 (A Study on the Improvement of Airflow Deflection in a Cleanroom of Class 1000)

  • 노광철;이승철
    • 설비공학논문집
    • /
    • 제22권4호
    • /
    • pp.225-233
    • /
    • 2010
  • We performed 3 dimensional numerical study on the improvement of the airflow deflection in the cleanroom of Class 1000, which is presently operated for the manufacturing process in Korea. The Deflection angle and the non-uniformity were investigated to analyze the airflow characteristics and the performance of cleanroom with variations of the cleanroom occupancy state, the filters' arrangement, and the floor return air system. From the numerical results, we found out that the airflow pattern of the cleanroom is more unidirectional and stable in the condition of at-rest than in the condition of as~built. It is due to that the equipments installed in the cleanroom play a role like partitions, which prevent the airflow from inclining toward the recirculation air duct. And it is needed to arrange the filter units parallel to the equipments array without a gap between them for maintaining the unidirectional airflow pattern. Finally, we knew that it is very important to install the partition like the eyelid above the equipment to keep the unidirectional airflow around the equipments and remove the contaminants quickly.

The Vibration Control of Flexible Manipulator using A Reference Trajectory Command and Fuzzy Controller

  • Park, Yang-Su;Kang, Jeng-Ho;Park, Yoon-Myung;Cho, Yong-Gab
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.67.3-67
    • /
    • 2001
  • A fuzzy control strategy is described which is utilized to control the joint angle and tip deflection in single flexible manipulator. In this paper, an existing model for a single flexible manipulator is used f3r the initial development of an FLC. One FLC is designed to govern the joint angle of the manipulator as it is rotated from one position to another, and a second FLC is designed to attenuate the tip deflection which result from joint angle body motion. Reference Trajectory Command is an important method to reduce vibration in flexible beam. This paper presents a very simple command control shaping which eliminates multiple mode residual vibration in a flexible beam combined fuzzy controller ...

  • PDF

가변 두께를 갖는 직교이방성 평행사변형판의 자유진동 해석 (Free Vibrations of Orthotropic Plates with Variable Thickness)

  • 허철원;문덕홍
    • 수산해양기술연구
    • /
    • 제22권1호
    • /
    • pp.49-57
    • /
    • 1986
  • The vibrations problem of thin orthotropic skew plates of linearly varying thickness is analyzed using the small deflection theory of plates. Using dimensionless oblique coordinates, the deflection surface can be expressed as a polyonmial series satisfying the boundary conditions. For orthotropic plates which is clamped on all the four edges, numerical results for the first two natural frequencies are presented for various combinations of aspect ratio, skew angle and taper parameter. The properties of material used are one directional glass fibre reinforced plastic GFRP. The results obtained may be summarised as follows: 1. In case of the first mode vibration of plates with increase in the skew angle, the natural frequencies of plates decrease. 2. As the aspect ratio decrease, the natural frequencies of plates decrease. 3. For the identical skew angle, natural frequencies of plates increase with the taper parameter of thickness.

  • PDF

피로실험에 의한 콘크리트 포장체 경사가로줄눈부의 하중전달율에 관한 연구 (A Study on Load Transfer Efficiency of Skewed Transverse Joint of Concrete Pavement by the Fatigue Test)

  • 황승의;배주성
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권3호
    • /
    • pp.203-211
    • /
    • 2001
  • This paper presents load transfer efficiency of skewed transverse joint of jointed concrete pavement with the fatigue model test. A 1/12 scale model was used to satisfy the geometry, loading, material similitude, which are variables to the skew angel of transverse joint. As the test results by fatigue load 700kgf applied, the deflection and stress of transverse joint were decreased as to increasing of skew angle of transverse joint. In addition, load transfer efficiency of transverse joint with skew angle is better than the load transfer efficiency of transverse joint without skew angle.

  • PDF

Analysis of Static Lateral Stability Using Mathematical Simulations for 3-Axis Tractor-Baler System

  • Hong, Sungha;Lee, Kyouseung;Kang, Daein;Park, Wonyeop
    • Journal of Biosystems Engineering
    • /
    • 제42권2호
    • /
    • pp.86-97
    • /
    • 2017
  • Purpose: This study aims to evaluate the applicability of a tractor-baler system equipped with a newly developed round baler by conducting stability analyses via static-state mathematical simulations and verification experiments for the tractor equipped with a loader. Methods: The centers of gravity of the tractor and baler were calculated to analyze the transverse overturning of the system. This overturning of the system was analyzed by applying mathematical equations presented in previous research and comparing the results with those obtained by the newly developed mathematical simulation. For the case of the tractor equipped with a loader, mathematical simulation results and experimental values from verification experiments were compared and verified. Results: The center of gravity of the system became lower after the baler was attached to the tractor and the angle of transverse overturning of the system steadily increased or decreased as the deflection angle increased or decreased between $0^{\circ}$ and $180^{\circ}$ on the same gradient. In the results of the simulations performed by applying mathematical equations from previous research, right transverse overturning occurred when the tilt angle was at least $19.5^{\circ}$ and the range of deflection angles was from $82^{\circ}$ to $262^{\circ}$ in counter clockwise. Additionally, left transverse overturning also occurred at tilt angles of at least $19.5^{\circ}$ and the range of deflection angles was from $259^{\circ}$ to $79^{\circ}$ in counter clockwise. Under the $0^{\circ}$ deflection angle condition, in simulations of the tractor equipped with a loader, transverse overturning occurred at $17.9^{\circ}$, which is a 2.3% change from the results of the verification experiment ($17.5^{\circ}$). The simulations applied the center of gravity and the correlations between the tilt angles, formed by individual wheel ground contact points excluding wheel radius and hinge point height, which cannot be easily measured, for the convenient use of mathematical equations. The results indicated that both left and right transverse overturning occurred at $19.5^{\circ}$. Conclusions: The transverse overturning stability evaluation of the system, conducted via mathematical equation modeling, was stable enough to replace the mathematical equations proposed by previous researchers. The verification experiments and their results indicated that the system is workable at $12^{\circ}$, which is the tolerance limit for agricultural machines on the sloped lands in South Korea, and $15^{\circ}$, which is the tolerance limit for agricultural machines on the sloped grasslands of hay in Japan.