• Title/Summary/Keyword: Deflection angle

Search Result 298, Processing Time 0.027 seconds

Deflection of Ultra-high Energy Cosmic Rays by the Galactic Magnetic Field

  • Kim, Jihyun;Kim, Hang Bae;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.73.1-73.1
    • /
    • 2014
  • We investigate the influence of the galactic magnetic field (GMF) on the arrival direction (AD) of ultra-high energy cosmic rays (UHECRs) by searching the correlation with the large-scale structure (LSS) of the universe. The deflection angle of UHECRs from sources by the GMF is reflected in a source model by introducing the Gaussian smearing angle as a free parameter. Assuming the deflections by the GMF are mainly dependent on the galactic latitude, b, we divide the regions of sky by b and analyze the correlation between the AD of UHECRs and the LSS of the universe in each region varying the smearing angle. We find the deflection is strongly dependent on the galactic latitude by the maximum likelihood estimation. Specifically, the best-fit smearing angles are $9^{\circ}$ and $84^{\circ}$ in the high galactic latitude (HGL), $-90^{\circ}$ < b < $-60^{\circ}$, and in the low galactic latitude (LGL), $-30^{\circ}$ < b < $30^{\circ}$, respectively. The strength of GMF becomes stronger from the HGL to the LGL. From the results, we can estimate the strength of GMF in each region. In the LGL, for example, if we assume UHECRs are protons, we have the order of $100{\mu}G$ GMF, which is much stronger than the expected value of conventional GMF model. However, if the primaries are heavy nuclei, which is consistent with the observational result of mass composition analysis, the order of GMF strength is a few ${\mu}G$. More data from the future experiments make it possible to study the GMF between the source of UHECRs and Earth more accurately.

  • PDF

A Study on Operation Characteristics of Co-flow Fluidic Thrust Vector Control under Over-expanded Jet Condition (동축류 이차유동 분사를 이용한 초음속 과팽창 제트유동의 유체역학적 추력방향제어 작동특성 연구)

  • Heo, Jun-Young;Jeon, Dong-Hyun;Lee, Yeol;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.416-423
    • /
    • 2011
  • The purpose of this research is to investigate the operation characteristics of fluidic thrust vector control using injection of the control flow parallel to the main jet direction; Co-flow injection. The technique bases on the Coanda effect of flow. Both numerical and experimental studies were conducted to investigate operation parameters; flow structure, the jet deflection angle, and shock effects near the nozzle exit. While the total pressure of main jet is the range of 300 to 790 kPa, the total pressure of control flow varies from 120 to 200 kPa. The jet deflection angle and thrust coefficient have linear relation with the pressure ratio(PR) of main jet to control flow in 0.15 < PR < 0.4 but show their limit above PR = 0.4.

Study on the Model Tests of Cavitation Erosion Occurring in Navy Ship's Flat-Type Rudder (함정의 평판형 방향타 캐비테이션 침식에 대한 모형 시험 연구)

  • Bu-Geun Paik;Jong-Woo Ahn;Young-Ha Park;So-Won Jeong;Jae-Yeol Song;Yoon-Ho Ko
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.31-37
    • /
    • 2023
  • In the present study, a method of performing cavitation erosion test directly on the anodized surface of the rudder model is proposed, not applying ink or paint on its surface. An image processing technique is newly developed to quantitatively evaluate the erosion damages on the rudder model surface after erosion test. The preprocessing saturation image, image smoothing, adaptive hysteresis thresholding and eroded area detection algorithms are in the image processing program. The rudder cavitation erosion tests are conducted in the rudder deflection angle range of 0° to -4°, which is used to maintain a straight course at the highest speed of the targeted navy ship. In the case of the conventional flat-type full-spade rudder currently being used in the target ship, surface erosion can occur on the model rudder surface in the above rudder deflection angle range. The bubble type of cavitation occurs on rudder surface, which is estimated to be the main reason of erosion damage on the rudder surface.

Rapid assessment of suspension bridge deformation under concentrated live load considering main beam stiffness: An analytical method

  • Wen-ming Zhang;Jia-qi Chang;Xing-hang Shen;Xiao-fan Lu;Tian-cheng Liu
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.53-65
    • /
    • 2023
  • With the gradual implementation of long-span suspension bridges into high-speed railway operations, the main beam's bending stiffness contribution to the live load response permanently grows. Since another critical control parameter of railway suspension bridges is the beam-end rotation angle, it should not be ignored by treating the main beam deflection as the only deformation response. To this end, the current study refines the existing method of the main cable shape and simply supported beam bending moment analogy. The bending stiffness of the main beam is considered, and the main beam's analytical expressions of deflection and rotation angle in the whole span are obtained using the cable-beam deformation coordination relationship. Taking a railway suspension bridge as an example, the effectiveness and accuracy of the proposed analytical method are verified by the finite element method (FEM). Comparison of the results by FEM and the analytical method ignoring the main beam stiffness revealed that the bending stiffness of the main beam strongly contributed to the live load response. Under the same live load, as the main beam stiffness increases, the overall deformation of the structure decreases, and the reduction is particularly noticeable at locations with original larger deformations. When the main beam stiffness is increased to a certain extent, the stiffening effect is no longer pronounced.

Analysis of Shapes of Bending and Draping by the Model Rule (닮음 법칙에 의한 굽힘 및 드레이프 형상의 해석)

  • 서정권;이정욱
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.6
    • /
    • pp.1116-1124
    • /
    • 1996
  • The factors to presume the shapes of bending and draping were examined in this study, by applying the similar phenomenon and theory of analysis. The findings were as followings: 1. The value of deflection angle (f) of deflection curve were almost consistent with those of K number and the shapes of deflection curve were congruent, under the condition of that the values of EI/w are almost similar and the lengths of samples are consistent. 2. The values of drape area, drape coefficient, mean of deflection angle, and $\pi$ number were consistently estimated and the shapes of drape were almost the same, under the condition of that the values of EI/w are similar and the diameter of samples are consistent. 3. In using the samples with different values of EI/w, scale factor, kl, was obtained from the formula, the shapes of bending of the referent samples and compsactive smaples was geometrically similar, which the lengths of samples were 1,1'and were satisfied with the formula, hi: L'11, and their $\pi$ number were also consistent. 4. In applying the samples with different values of Rllw, scale factor (kl) was obtained and then, when semidiameter of samples was adjusted to be satisfied with the formula, k1=L/L, the shapes of draping of referent samples and comparative samples were geometrically similar. Furthermore, their $\pi$ number was also consistent. 5. The shares of bending and draping could be changed in terms of three factors such as the lengths of samples, bending ridigity, and weigths per unit area. $\pi$ number was obtained from theory of similar phenomenon, which was index to presume shapes of bending and the shapes of draping getting from the three factors.

  • PDF

Performance Analysis of an Expansion Deflection Nozzle by Nozzle Length Reduction Method (노즐 길이 단축 방안에 따른 ED 노즐의 성능 분석)

  • Joomi Lee;Junsub Choi;Hwanil Huh
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.5
    • /
    • pp.11-23
    • /
    • 2022
  • For the design of the shortened ED(Expansion Deflection) nozzle, a numerical study of ED nozzle was performed according to the length reduction methods. The first method is to reduce the extension length of the ED nozzle with 80% bell nozzle length by 10%, 20% and 30%. The second method is to shorten the extension length by increasing the nozzle throat angle. Due to the increase in the curvature of the contour as the length shortened, the decrease in the nozzle exit velocity between the ED nozzle with 80% bell nozzle length and the ED nozzle in the first method was reduced, and the thrust become similar. The ED nozzle of the second method increased the thrust by increasing the nozzle exit velocity compared to the ED nozzle with 80% bell nozzle length.

Process Design of Shaft Considering Effect of Preform and Eccentric Load on Cold Forging Product in Multistage Former of Horizontal Type (수평식 냉간 다단포머에서 예비성형체와 편심하중을 고려한 Shaft의 성형공정설계)

  • Park S. S.;Lee J. M.;Kim B. M.
    • Transactions of Materials Processing
    • /
    • v.14 no.1 s.73
    • /
    • pp.57-64
    • /
    • 2005
  • This study deals with the cold forging process design for shaft in the main part of automobile motors with rectangular deep groove. In forging process, the accuracy and die lift is very important because it have influence on reduction of the production cost and the increase of the production rate. Therefore, it is necessary to develop the manufacturing process of shaft by cold forging., process variables are the cropped face angle of billet and the eccentric load of punch. The former is derived from cropping test, the latter is occurred by clearance between container and preform. Also, grooved preform select the process variable for decrease in punch deflection. We investigate that a deflection of punch and a deformation of preform to every process variables. Through this investigation, we suggest the optimal preform and process design, expect to be improved the tool life in forging process.

A measuring system for determination of a cantilever beam support moment

  • Loktionov, Askold P.
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.431-439
    • /
    • 2017
  • This investigation is aimed to develop a model of experimental-computation determination of a support moment of a cantilever beam loaded with concentrated force at its end including the optimal choice of coordinates of deflection data points and parameters of transformation of deflection data in case of insufficient accuracy of the assignment of initial parameters (support settlement, angle of rotation of the bearing section) and cantilever beam length. The influence of distribution and characteristics of sensors on the cantilever beam on the accuracy of determining the support moment which improves in the course of transition from the uniform distribution of sensors to optimal non-uniform distribution is shown. On the basis of the theory of inverse problems the method of transformation reduction at numerical differentiation of deflection functions has been studied. For engineering evaluation formulae of uncertainty estimate to determine a support moment of a cantilever beam at predetermined uncertainty of measurements using sensors have been obtained.

Surface Precision due to Change of Cutting Depth and Cutting Location when Ball End Milling (볼엔드밀 가공시 절삭깊이와 가공위치의 변화에 따른 표면정밀도)

  • 박성은;왕덕현;김원일;이윤경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.274-278
    • /
    • 2000
  • Ball end milling process is widely used in the die and mould manufacturing because of suitableness for the machining of free form surface. But, as ball end mill is long and thin, it is easily deflected by cutting force. In this study, Cutting force, tool deflection and surface precision was measured according to the change of depth and cutting location. Cutting force was acquired with tool dynamometer and a couple of eddy-current sensor measured tool deflection in x-y direction each. After machining, surface precision was measured with roundness tester and coordination measuring machine for sculptured surface angle change and cutting depth.

  • PDF