• Title/Summary/Keyword: Deflection angle

Search Result 298, Processing Time 0.029 seconds

Prediction of Bending Angle of Bellows and Stability Analysis of Pipeline Using the Prediction (벨로우즈형 신축관이음의 휨각도 예측 및 이를 이용한 배관계의 안정성 해석)

  • Son, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.827-833
    • /
    • 2022
  • In this study, the prediction of the bending angle for the 350 A bellows-type expansion joints and the structural stability according to the load were determined. The stability of the 2km piping system was predicted by applying the allowable bending angle of the expansion pipe joint obtained from the analysis. The maximum bending angle was calculated through bending analysis of the bellows-type expansion joints, and the maximum bending angle by numerical calculation was about 1.8°, and the maximum bending angle of the bellows obtained by comparing the allowable strength of the material was about 0. 22°. This angle was very stable compared to the allowable bending angle (3°) of the expansion pipe joint regulation. By applying the maximum bending angle, the allowable maximum deflection of the 2 km pipe was about 3.8 m. When the seismic load was considered using regression analysis, the maximum deflection of the 2km pipe was about 142.3mm, and it was confirmed that the bellows-type expansion joints and the deflection were stable compared to the allowable maximum deflection of the pipe system. These research results are expected to present design and analysis guidelines for the construction of piping and the development of bellows systems, and to be used as basic data for systematic research.

Tool Deflection and Geometric Accuracy to the Change of Inclination Position Angle during Machining Sculptured Surface (곡면가공시 경사위치각 변화에 따른 공구변형과 형상정밀도)

  • 왕덕현;박희철
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.55-64
    • /
    • 2001
  • In this study, hemisphere and cylindrical shapes were machined for different tool paths and machining conditions with ball endmill cutters. Tool deflection, cutting forces and shape accuracy were measured according to the inclination position of the sculptured surface. As the decreasing of inclination position angle, the tool deflection was increased due to the decreased cutting speed when the cutting edge is approaching toward the center. Tool deflection when upward cutting is obtained less than that of downward cutting and down-milling in upward cutting showed the least tool deflection for the sculptured surface. Roundness values were found in least roundness error when down-milling in upward cutting. It is obtained the very little difference between 90。and 45。 of inclination position angle. The best surface roughness value was obtained in upward up-milling and showed different tendency with tool deflection and cutting force. For down-milling, the cutting resistance of the side wall direction is larger than that of feed direction. Therefore, this phenomenon which is received over cutting resistance can be caused of chatter.

  • PDF

Fabrication of electromagnetically actuated Al mirror with staple joint structure (스테이플 조인트를 이용한 전자력 구동 Al 미러의 제작)

  • Lim, Tae-Sun;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1884-1886
    • /
    • 2001
  • In this study, we fabricated Al mirror driven by electromagnetic force. Because the mirror has Ni staple joint, it reduces the deflection angle of torsion spring for the maximum deflection of mirror. Therefore the magnetic field for maximum deflection can be reduced, By additional electrostatic force, the deflection angle of mirror plate can be increased to $90^{\circ}$. The fabricated mirror is actuated by electromagnetic force of a simple solenoid. The maximum deflection angle by magnetic field is about $86^{\circ}$ with $1.2{\times}10^4$ A/m.

  • PDF

Study on Analysis of Optical Deflection of Laser Scattering Based on Rayleigh Criterion for Crystalline Silicon Wafer in Solar Cell (태양전지용 결정질 실리콘 웨이퍼에서의 레일리기준 기반 레이저산란의 광편향 분석에 관한 연구)

  • Kim, Gyung-Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.31-37
    • /
    • 2010
  • In this paper, optical deflection of laser scattering has been investigated based on Rayleigh criterion for crystalline silicon wafer in solar cell. A laser scattering mechanism is newly designed using light scattering properties in silicon wafer. Intensity distributions of laser scattering are different, depending on the incident angle of laser computed from Rayleigh criterion. In case of the incident angle satisfied with the criterion, they are asymmetric. Also, their specular reflection angle is shifted to unpredicted ones. These phenomena are in accordance with previous theories of laser scattering. The optical deflection of laser scattering is experimentally identified with the designed laser scattering mechanism. Its mathematical model is presented from the geometric relationship of laser scattering. It is shown that the optical deflection of laser scattering agree with the presented model, exclusive of grazing angles which is satisfied with Rayleigh criterion.

Machining Characteristics of Hemisphere Shape by Ball Endmilling (볼엔드밀가공에 의한 구면형상의 가공특성)

  • Wang, Duck Hyun;Kim, Won Il;Lee, Yun Kyeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.5-14
    • /
    • 2002
  • Hemisphere shapes were machined for different tool paths and machining conditions with ball endmill cutters. It was also found out how feedrate affect the precision of the machining and also tried to study the most suitable feedrate in specific cutting condition. Tool deflection, cutting forces and shape accuracy were measured according to the inclination position of the sculptured surface. As the decreasing of inclination position angle, the tool deflection was increased due to the decreased cutting speed when the cutting edge is approaching toward the center. Tool deflection when upward cutting IS obtained less than that of downward cutting and down-milling in upward cutting showed the least tool deflection for the sculptured surface. For down-milling, the cutting resistance of the side wall direction is larger than that of feed direction. It was found that the tool deflection is getting better as tool path is going to far from the center for convex surface.

  • PDF

Effects of the Helix Angle on the Tool Deflection in End Milling (엔드밀 가공시 헬릭스각이 공구변위에 미치는 영향)

  • 맹민재;이성찬;정준기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.373-377
    • /
    • 2002
  • In the end milling operation the deflection of the cutter is an important factor affecting the accuracy of machining with implications on the selection of cutting parameters and economics of the operation. The deflection of the end mill was studied both experimentally with strain gauge, tool dynamometer, laser measuring apparatus and on a finite element model of the cutting using ANSYS software. The deflection of machining tool with various helix angles was studied with FEM simulation and experiment. ANSYS analysis performed on the finite element model of the end mill provides deflection results which agree within 15.0% with the experimental ones.

  • PDF

A study on the optimal value for the towers height of the ropeway (가공색도의 지주높이 최적치에 관한 연구)

  • 최선호;박용수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.381-388
    • /
    • 1988
  • The heights of the towers of a ropeway are theoretically derived and the result is experimentally verified. The accuracy in the equation of deflection angle obtained by applying the characteristics of catenary curve was confirmed through experiment. By applying these equations the optimal values of the tower heights could be obtained because the deflection angles trade off each other. The deflection angle was measured by using the curve fitting technique.

The vibration control of Flexible Manipulator using Parallel Fuzzy controller and Reference Trajectory Command (병렬퍼지 제어기와 기준궤적신호를 이용한 유연한 매니퓰레이터의 진동제어)

  • 박양수;박윤명
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.61-66
    • /
    • 2002
  • A fuzzy control strategy is described which is utilized to control the joint angle and tip deflection in single flexible manipulator. In this paper, an existing model for a single flexible manipulator is used for the initial development of an FLC. One FLC is designed to govern the joint angle of the manipulator as it is rotated from one position to another, and the second FLC is designed to attenuate the tip deflection which result from joint angle body motion. Reference Trajectory Command is an important method to reduce vibration in flexible beam. This paper presents a very simple command control shaping which eliminates multiple mode residual vibration in a flexible beam combined parallel fuzzy controller. The effectiveness of proposed scheme is demonstrated through computer simulation.

  • PDF

The Characteristics of the Milling Tool Deflection According to the Variation of Helix Angle (헬릭스각의 변화에 따른 밀링공구의 변위 특성 연구)

  • Maeng, Min-Jae;Chung, Joon-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.860-866
    • /
    • 2004
  • In the end milling operation the deflection of the cutter is an important factor affecting the accuracy of machining, with implications on the selection of cutting parameters and economics of the operation. Several studies were devoted to the end mill deflection and its effects, notably, providing a useful insight into the problem. Although the deflection affects adversely the accuracy, the flexibility of the cutter is beneficial in attenuating the overload in a sudden transient situation, as well as in attenuating chatter. The deflection of the end mill was studied both experimentally with strain gauge, tool dynamometer, laser measuring apparatus and on a finite element model of the cutting using ANSYS software. The deflection of machining tool with various helix angles was studied with FEM simulation and experiment. ANSYS analysis performed on the finite element model of the end mill provides deflection results which agree within 15.0% with the experimental ones.

A Study on Micro Tool Deflection in Micro Endmilling Process (마이크로 엔드밀링 시 공구 변형에 관한 연구)

  • Kim, G.H.;Yoon, G.S.;Heo, Y.M.;Jung, W.C.;Cho, M.W.
    • Transactions of Materials Processing
    • /
    • v.15 no.9 s.90
    • /
    • pp.654-659
    • /
    • 2006
  • In this paper, the real shapes of micro tool deflection were observed. In micro endmilling process, micro tool deflection generates very serious problems in contrast to macro tool deflection. For analyzing the micro tool deflection, the trend of micro tool deflection was observed using real captured images in this paper. To get the real images of micro tool deflection, micro slot cutting processes were executed under cutting volume using micro endmill($Dia.\;200{\mu}m$) and real images of tool deflection were obtained during cutting processing by high-speed camera. Finally, the extent of tool deflection was calculated by the deflection angle according to cutting volume.