• Title/Summary/Keyword: Deflection Length

Search Result 364, Processing Time 0.022 seconds

New Analytical Method with Curvature Based Kinematic Deflection Curve Theory

  • Tayyar, Gokhan Tansel
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.195-199
    • /
    • 2012
  • This paper reports a new analytical method to calculate the planar displacement of structures. The cross-sections were assumed to remain in plane and the deflection curve was evaluated using the curvature values geometrically, despite being solved with differential equations. The deflection curve was parameterized with the arc-length of the curvature values, and was taken as an assembly of chains of circular arcs. Fast and accurate solutions of complex deflections can be obtained easily. This paper includes a comparison of the nonlinear displacements of an elastic tapered cantilever beam with a uniform moment distribution among the proposed analytical method, numerical method of the theory and large deflection FEM solutions.

The Effect of the Gap of Spline on the Deflection of Propeller Shaft (스플라인의 공차가 프로펠러 샤프트의 처짐에 미치는 영향)

  • Han, Dong-Seop;Lee, Seong-Wook;Kim, Yong;Han, Geun-Jo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.172-174
    • /
    • 2007
  • A propeller shaft is the device which is used to transmit the power between two shafts in a vehicles, an industrial machinery, etc. The end of spline is worm due to the deflection of the propeller shaft, and a lifetime of it is reduced, because it for industrial machinery has the length of 2,500 mm, the weight of $300\;kg_{f},$ and the sliding distance of $\pm250\;mm.$ Accordingly in this study we analyzed the effect of the gap of spline on the deflection of a propeller shaft carrying out the finite element analysis, in order to determine the proper gap of spline to minimize the deflection of it. We adopt 10-kinds of gap of spline from 0.05 mm to 0.5 mm at interval of 0.05 mm as the design parameter for the finite element analysis and the centrifugal force as the load condition.

  • PDF

Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams

  • Azandariani, Mojtaba Gorji;Gholami, Mohammad;Nikzad, Akbar
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.37-47
    • /
    • 2022
  • In this paper, the non-linear static analysis of Timoshenko nanobeams consisting of bi-directional functionally graded material (BFGM) with immovable ends is investigated. The scratching in the FG nanobeam mid-plane, is the source of nonlinearity of the bending problems. The nonlocal theory is used to investigate the non-linear static deflection of nanobeam. In order to simplify the formulation, the problem formulas is derived according to the physical middle surface. The Hamilton principle is employed to determine governing partial differential equations as well as boundary conditions. Moreover, the differential quadrature method (DQM) and direct iterative method are applied to solve governing equations. Present results for non-linear static deflection were compared with previously published results in order to validate the present formulation. The impacts of the nonlocal factors, beam length and material property gradient on the non-linear static deflection of BFG nanobeams are investigated. It is observed that these parameters are vital in the value of the non-linear static deflection of the BFG nanobeam.

A Study on the Snap-through Behaviour of Plate Elements due to the Initial Deflection Shape (초기처짐형상에 따른 판부재의 천이거동에 관한 연구)

  • Park, Joo-Shin;Lee, Kye-Hee;Ko, Jae-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.1
    • /
    • pp.13-20
    • /
    • 2005
  • Since High Tensile Steel has been widely used to thin plate on the steel structure and marine structure, It has increased possibility of buckling. Especially, initial deflection of ship structure is mainly caused by heat processing of welding or cutting etc. This initial deflection has negative effect to thin plate, which would incur a complicated nonlinear behavior accompanied with secondary buckling. If idealized initial deflection is considered in early marine structure design of secondary buckling, accuracy and reliability will be improved considerably. The measurement data of initial deflection from experiment is applied to finite element series analysis. For FEA(ANSYS), Applied nonlinear buckling analysis is used by Newton-Raphson method & Arc-length method included in this program.

A Study on the Compressive Ultimate Strength of Ship Plating with Complicated Shape of the Initial Deflection (복잡한 형상의 초기처짐을 가진 선체판의 압축최종강도에 관한 연구)

  • 고재용;박주신;이계희;박성현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.83-88
    • /
    • 2004
  • Recently, High Tensile Steel is adapt to thin plate on the steel structure and marine structure is used widely. It is possible for buckling happens great. Specially, Initial deflection of ship structure happens in place absence necessarily by heat processing of welding or cutting etc. This Initial Deflection is exerted negative impact when thin plate absence complicated nonlinear behaviour accompanied secondary buckling. As a result, must idealize initial deflection that occurrence is possible to endow stability and accuracy in the hull structure or marine structure and reflect in early structure design considering secondary buckling. Longi direction of compressive load interacts and analyzed finite element series analysis that apply various kinds initial deflection shape measured actually on occasion that is arranged simply supported condition in this research. Applied ANSYS (elasto-plasticity large deformation finite element method) to be mediocrity finite element program for analysis method and analysis control used in Newton-Raphson method & Arc-length method.

  • PDF

Seismic behavior investigation of the steel multi-story moment frames with steel plate shear walls

  • Mansouri, Iman;Arabzadeh, Ali;Farzampour, Alireza;Hu, Jong Wan
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.91-98
    • /
    • 2020
  • Steel plate shear walls are recently used as efficient seismic lateral resisting systems. These lateral resistant structures are implemented to provide more strength, stiffness and ductility in limited space areas. In this study, the seismic behavior of the multi-story steel frames with steel plate shear walls are investigated for buildings with 4, 8, 12 and 16 stories using verified computational modeling platforms. Different number of steel moment bays with distinctive lengths are investigated to effectively determine the deflection amplification factor for low-rise and high-rise structures. Results showed that the dissipated energy in moment frames with steel plates are significantly related to the inside panel. It is shown that more than 50% of the dissipated energy under various ground motions is dissipated by the panel itself, and increasing the steel plate length leads to higher energy dissipation capability. The deflection amplification factor is studied in details for various verified parametric cases, and it is concluded that for a typical multi-story moment frame with steel plate shear walls, the amplification factor is 4.93 which is less than the recommended conservative values in the design codes. It is shown that the deflection amplification factor decreases if the height of the building increases, for which the frames with more than six stories would have less recommended deflection amplification factor. In addition, increasing the number of bays or decreasing the steel plate shear wall length leads to a reduction of the deflection amplification factor.

Stress Relaxation Properties of Cucumber under Bending Moment (휨 모멘트에 대한 오이의 응력이완(應力弛緩) 특성(特性))

  • Song, C.H.;Kim, M.S.;Park, J.M.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.3
    • /
    • pp.262-269
    • /
    • 1993
  • Stress relaxation behaviors of the cucumber under bending moment were tested with UTM at three levels of loading rate and initial deflection ratio. Sample cucumber was selected from three cultivars of cucumber, Cheongjangmadi, Baekdadagi, and Gyeousalicheongjang, because these cultivars are the most popular grown cultivars in Korea. When the bending moment was applied to the cucumber sample, the effective span between simple supports was held a constant value of 116mm with consideration of the selected sample length. The objectives of this study were to develop the rheological models such as linear and nonlinear models of the stress relaxation for the cucumber samples, and to investigate the effects of loading rate and initial deflection ratio on the stress relaxation behavior of the cucumber. The results of this study may be summarized as follows : 1. Stress relaxation behavior of the cucumber could be well described by the generalized Maxwell model for each level of deflection ratio. But the stress relaxation behavior of the sample was found to be initial deflection ratio and time dependent, and it was represented the nonlinear viscoelastic model as a function of initial deflection ratio and time. 2. Stress relaxation behavior of the cucumber samples was very highly affected by the loading rate and the initial deflection ratio. The more loading rate and initial deflection ratio resulted in the more initial bending stress and after stress relaxation progressed more rapidly. 3. At the same test conditions, it was found that the stress relaxation rate of Cheongjangmadi was faster than that of other cultivars.

  • PDF

Elastic Critical Load and Effective Length Factors of Continuous Compression Member by Beam Analogy Method

  • Lee, Soo-Gon;Kim, Soon-Chul
    • Architectural research
    • /
    • v.2 no.1
    • /
    • pp.47-54
    • /
    • 2000
  • The critical load of a continuous compression member was determined by the beam-analogy method. The proposed method utilizes the stress-analysis results of the analogous continuous beam, where imaginary concentrated lateral load changing its direction is applied at each midspan. The proposed method gives a lower bound error of critical load and can predict the span that buckles first. The effective length factors for braced frame columns can be easily determined by the present method, but result in the upper bound errors in all cases, which can lead to a conservative structural design.

  • PDF

Camber calculation of prestressed concrete I-Girder considering geometric nonlinearity

  • Atmaca, Barbaros;Ates, Sevket
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Prestressed concrete I-girders are subject to different load types at their construction stages. At the time of strand release, i.e., detensioning, prestressed concrete girders are under the effect of dead and prestressing loads. At this stage, the camber, total net upward deflection, of prestressed girder is summation of the upward deflection due to the prestressing force and the downward deflection due to dead loads. For the calculation of the upward deflection, it is generally considered that prestressed concrete I-girder behaves linear-elastic. However, the field measurements on total net upward deflection of prestressed I-girder after detensioning show contradictory results. In this paper, camber calculations with the linear-elastic beam and elastic-stability theories are presented. One of a typical precast I-girder with 120 cm height and 31.5 m effective span length is selected as a case study. 3D finite element model (FEM) of the girder is developed by SAP2000 software, and the deflections of girder are obtained from linear and nonlinear-static analyses. Only geometric nonlinearity is taken into account. The material test and field measurement of this study are performed at prestressing girder plant. The results of the linear-elastic beam and elastic-stability theories are compared with FEM results and field measurements. It is seen that the camber predicted by elastic-stability theory gives acceptable results than the linear-elastic beam theory while strand releasing.

Serviceability design of a cold-formed steel portal frame having semi-rigid joints

  • Lim, J.B.P.;Nethercot, D.A.
    • Steel and Composite Structures
    • /
    • v.3 no.6
    • /
    • pp.451-474
    • /
    • 2003
  • Details are given of a cold-formed steel portal framing system that uses simple bolted moment-connections for both the eaves and apex joints. However, such joints function as semi-rigid and, as a result, the design of the proposed system will be dominated by serviceability requirements. While serviceability is a mandatory design requirement, actual deflection limits for portal frames are not prescribed in many of the national standards. In this paper, a review of the design constraints that have an effect on deflection limits is discussed, and rational values appropriate for use with cold-formed steel portal frames are recommended. Adopting these deflection limits, it is shown through a design example how a cold-formed steel portal frame having semi-rigid eaves and apex joints can be a feasible alternative to rigid-jointed frames in appropriate circumstances.