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Abstract 
 

This paper reports a new analytical method to calculate the planar displacement of structures. The cross-sections 
were assumed to remain in plane and the deflection curve was evaluated using the curvature values geometrically, 
despite being solved with differential equations. The deflection curve was parameterized with the arc-length of the 
curvature values, and was taken as an assembly of chains of circular arcs. Fast and accurate solutions of complex 
deflections can be obtained easily. This paper includes a comparison of the nonlinear displacements of an elastic 
tapered cantilever beam with a uniform moment distribution among the proposed analytical method, numerical 
method of the theory and large deflection FEM solutions.  
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1. Introduction  

Deflection calculation methods of one dimensional 

(1-D) structures mainly use a deflection curve model 

by differential equations under some geometrical 

assumptions. On the other hand, there is an alternative 

model that the deflection curve is generated geometri-

cally where the deflection curve consists of circular 

arcs of osculating circles [1].  

Geometrical-based theory does not deal with the 

loads or material model that generates a curvature, 

which can be calculated from equilibrium equations. 

The kinematic relationship between curvature and 

deflection does not change even if material or geo-

metrical nonlinearity occurs. Curvature physically 

indicates the arc of a circle.  Therefore, it models the 

deflection curve with an arc length parameterization 

whose direction and radius are determined from the 

curvature values. In theory, there is only one unit 

tangent vector [2] and only one unit normal vector for 

a common point of two adjacent arcs [1]. 

The main motivation of this approach was to obtain 

more accurate and faster solutions from deflection 

based solutions. The solutions will more accurate 

because there is no geometrical assumption like in 

nonlinear deflection theory or large deflection theory, 

and will also be faster because only pre-prepared 

curvature diagrams or functions can be used in simple 

equations without the need to solve differential equa-

tions. In addition to the numerical approximation 

from theory, where the structure was divided into 

sections [1], a new analytical method is proposed.  

-

any study on how to obtain analytically the deflection 

curve with the geometrical use of inconstant curva-

ture values. The range of this study is limited to the 

planar motion of structures for simplicity. The Pois-

d-

ered in the proposed theory. 1-D structures, such as 

rods, beam columns, and stiffened plates, can be in-

cluded in this category.  

Section 2 presents the kinematic relation between 

the deflection curve and curvature.  The method is 

illustrated in section 3.  The application of the meth-

od and a comparison with other solutions are reported 

in section 4. The last section is devoted to a conclu-

sion. 

 
2. Deflection Curve  
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The deflection curve or centroidal axis of a de-

formed/undeformed structure was defined by the 

general regular skew curve: . The structure was 

generated by cross section when the centroid of the 

cross section, C, moves along  with the plane of 

the cross section, A, being normal to deflection 

curve.  

 
Fig. 1. Unit tangent vector of a deflection curve at a point. 

 

A point on a regular curve has two important unit 

vectors: unit tangent and unit normal vectors. The 

direction of the tangent of a point on the deflection 

curve is determined with the unit tangent vector, T, 

which can be written in the form of , the slope 

angle between the x-axis, where i and j are the unit 

vectors of the x- and y-axis, respectively (Eq. (1)). 

Rectangular Cartesian coordinates and curvilinear 

coordinates were used. s is the arc length measured 

along a cross section from one end of the structure 

to C. The normal of the unit tangent vector is called 

the unit normal vector, u, by rotating the tangent 

vector counterclockwise 90° (Eq. (2)). These vec-

tors are both differentiable. 

(1) 

(2) 

Let I be an interval and a continuous function : I 

 is the arc length parameterized curve de-

fined by a position vector (s)= x(s)I +y(s)j +0k. 

Each component is differentiable and s I [3]. A 

curve is regular if the vector , 

i.e.  [4]. The curvature, , specifying 

the rotation of this triad as C moves along , was 

used to describe the configuration of . The curva-

ture can be written in the form of Eq. (3) to express 

the rate of change of the unit tangent with respect to 

the arc length [4, 5]. The curvature indicates a 

physical shape, an arc of an osculating circle. The 

radius of the osculating circle of (s) can be deter-

mined using Eq.(4) [5]. 

 

                                

If the curvature value has a positive sign, the slope 

angle will be cumulative and the center of curvature 

will be aligned by the unit normal vector. In the 

case of negative curvature values, the deflection 

shape will be concave and the center of curvature is 

aligned by the reverse of the unit normal vector. 

Curvature reports two things. The first is the radius 

of curvature and the second is the direction of the 

curvature center. A radius vector, R, can be defined 

from a point on the deflection curve to the center of 

curvature. R of a point on the deflection curve has a 

magnitude that can be determined from Eq. (4), and 

has a direction that can be specified from the sign 

of curvature and unit normal vector.  

 

 
Fig. 2.  Osculating circles of a point. 

 
The curvature values are dependent on the internal 

loads and material properties. Therefore, the curva-

ture function on a deflection curve could be discon-

tinuous. The left and right hand side values of the 

R(s) vector of a point on a deflection curve can be 

variable and are expressed as follows (Fig. (3))  

 

 

 
3. Displacement Determinations  

Suppose that the internal loads between a point on 

s1 and a point on s2 are known and constant. There-

fore, the curvature value between a point on s1 and 

a point on s2 is assumed to be constant and taken as 

the curvature of the right side of point s1: .  

If the curvature is constant between two points of 

a deflection curve, all points will have the same 

radius of curvature and the same center of curvature; 

sharing the same osculating circle between these 

points. The deflection curve between a point on s1 

and a point on s2 forms an arc. The radius of the arc 

(s1
+

point O(s1
+) (Fig. (3)). The vector of the start and 
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end point of the arc to the center of arc is R(s1
+) and 

R(s2
-), respectively.  

 

 
 

Fig. 3 Radius vectors of the subsequent osculating circles. 

 

 

The vector between the start and end points of the 

c, has a magnitude that equals the chord 

c, from 

point s1 to s2 can be defined from R vectors as fol-

lows (Fig.(3)): 

 

              (9) 

                         

 
Fig. 4 Displacement and deflection curve vectors of the de-

flection curve. 

 

The change in the unit normal vector between s1 

and s2 can be defined as follows: 

  

Eq. (9) can be expressed by substituting Eqs. (7), 

(8) and (10) into Eq. (9) (Fig. (4)).  

 

            (11) 

The deflection curve can be divided into sections 

composed of constant curvatures. The displacement 

vectors of each section can be determined by Eq. 

(11). The total displacement vector from the origin 

to point on sn is equal to the summation of all dis-

placement vectors between the origin point and 

point sn as follows:  

 

 

The unit normal vector is differentiable. Therefore, 

it is possible to take the sections arc lengths as in-

definitely small and define the displacement vector 

in an integral form as follows: 

 

The unit normal vector in Eq. (2) is dependent on 

the slope angle: it needs to be defined in terms of 

the curvature to solve Eq. (12). The slope angle can 

be expressed in terms of the curvature by integrat-

ing Eq. (3) as follows: 

 

Substituting Eq. (13) into Eq. (2) yields the nor-

mal unit vector as follows: 

 

 

The derivative of the normal unit vector can be 

obtained from Eq. (14). 

 

 

Substituting Eq. (15) into Eq. (12) yields the dis-

placement vector from the origin to a point on s as 

an integration of the curvature function and length. 
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The slope angle of the origin point is essential for 

starting and obtaining analytical solutions. The 

points at the clamped ends or extremum points have 

a zero slope angle. Therefore, these points are prac-

tical points to start the procedure. Alternatively, a 

zero slope angle point can be obtained using a trial 

and error procedure. 

 
4. Application  

Three main geometric assumptions are using to 

calculate the displacements of a deflection curve: 

linear, nonlinear and large deflections. Consider a 

sufficiently small segment between points 1 and 2 

on the deflection curve: the length between these 

points is ds, the radius of curvature on the segment 

is equal to r and the chord length between these 

points is dc. The tangent angles at points 1 and 2 

are 1 and 2, respectively. The central angle of the 

arc is the difference between the tangent angles  

(Fig. (5)).  

Consider an elastic tapered cantilever beam under 

a uniform moment of Mz and a total beam length of 

L (Fig.(5)).  The material of the beam is elastic 

and the flexural rigidity is EI, where E is the elastic 

modulus, and I is the moment of inertia. The width 

of the rectangular beam cross-section is B, and the 

height of the beam cross-section is Hmax in a 

clamped edge and Hmin in a free end (Fig.(5)).  The 

material of the beam was assumed to be elastic.  

 

 
Fig. 5. Elastic tapered cantilever beam 

 

The curvature equation for the elastic rectangular 

beam cross-section is given as Mz/EI [5]. Therefore, 

the curvature can be expressed as follows: 

 

H=Hmax-Hmin. The displacement equation 

can be obtained by substituting Eq. (17) into Eq. 

(16).  

 

 

The integration begins from the clamped edge, 

where . Therefore, the displacement equa-

tion in Eq. (18) can be expressed as follows:  

 

 

The dimensions and main properties are L = 800 

mm, Elasticity modulus = 200000 N/mm2, B = 

10mm, Hmax = 12 mm and Hmin = 2mm, with Mz up 

to 266667 Nmm.  Analytical solutions can be ob-

tained easily using Eq. (19), where the curvature is 

a function described in Eq. (17). 

 

 
Fig. 6  Deflection shapes of the elastic tapered cantilever 

beam under uniform moment. 

 

Fig. (6) shows the deflection shapes of the beam 

with increasing moment. Table 1 lists the results of 

the converged FEM [1], numerical approximation 

results of the curvature based displacement theory 

[1] and proposed method result for the vertical dis-

placement of the free end. The maximum difference 

between the results of the proposed analytical and 

the FEM solution was approximately 0.02%. The 

numerical and analytical methods achieved much 

closer results; < 0.00001%. 

 

 

r(L)/L= x(s)/

y(s)/L 
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Table 1. Comparison of the free end vertical displacements. 

FEM Numerical Analytical 

rmin/L -yfree/L -yfree/L -yfree/L 

0.0062 0.33120 0.33117 0.33117 

0.0125 0.31851 0.31847 0.31847 

0.0187 0.30058 0.30058 0.30058 

0.0250 0.30845 0.30842 0.30842 

0.0375 0.27903 0.27898 0.27898 

0.0625 0.20004 0.20000 0.20000 

0.1000 0.13326 0.13324 0.13324 

0.1875 0.07321 0.07320 0.07320 

    

 
6. Conclusions  

Theory provides an opportunity to form the most 

complex deflection shapes analytically with few 

inputs, and without the need to solve differential 

equations. In addition, this method makes the solu-

tion fast because the equations are simple. The 

common assumptions in deflection modeling are 

not used. Therefore, the solutions are more realistic 

as observed from results of the application.  

Equilibrium can be satisfied only if the axial/in-

plane stresses are defined precisely. Hence, correct 

deflection modeling is essential. In addition, se-

cond-order theory must be considered with accurate 

deflection modeling for reliable results in post 

buckling or in post collapse. Therefore, this theory 

will be an advance tool for post buckling and post 

collapse analysis. 

This paper focused only on 1-D structures. Never-

theless, the theory can be extended to two dimen-

sional (2-D) structures including compatibility ef-

fects. Future studies will focus on developing a 

procedure for buckling and post buckling calcula-

tions of 1-D structures, including an effective width 

determination as a function of deflection, and ap-

plying the theory for 2-D structures.  
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