• 제목/요약/키워드: Defensive mechanism

검색결과 34건 처리시간 0.028초

Effects of Chenopodium album Linne on Gastritis and Gastric Cancer Cell Growth

  • Kim, Pitna;Jeong, Choon-Sik
    • Biomolecules & Therapeutics
    • /
    • 제19권4호
    • /
    • pp.487-492
    • /
    • 2011
  • In our previous study, we investigated Chenopodium album Linne (CAL) ethanol extract and its fractions on anti-gastritic actions using the HCl/ethanol and indomethacin induced gastric lesion model and Helicobacter pylori (H. pylori). Based on the results, butanol fraction was most effective among fractions obtained from CAL. This study aims to elucidate the mechanisms of butanol fraction, and betaine as a constituent of the butanol fraction, on gastritis and anti-gastric cancer cell growth. First, we examined antioxidant properties using hydrogen peroxide and superoxide radical, and we found that butanol fraction and betaine may be good antioxidants. Second, cytotoxicity was assessed by measuring cell viability and 4,6-diamidino-2-phenylinodole dihydrochloride (DAPI) staining of human gastric cancer cells (AGS cells). We also examined the relationship between the cytotoxicity and intracellular $Ca^{2+}$ signaling mechanism. The butanol fraction demonstrated cell viability 71.49% at the concentration of 100 ${\mu}g/ml$ and increased intracellular $Ca^{2+}$ concentration in a dose dependent manner. Finally, we observed the mucus content as a defensive factor and gastric secretion as an aggressive factor, and found that the mucus content noticeably increased when treated with butanol fraction and betaine and gastric secretion decreased when treated with betaine in vivo study. From these results, we suggest that CAL butanol fraction and betaine may have protective effects on gastritis.

论香港本土主义的流变及其公法应对 (On the Evolution of Hong Kong's Nativism and Its Public Law Solutions)

  • Man, Lai Pui;Yinhao, Tan
    • 분석과 대안
    • /
    • 제3권1호
    • /
    • pp.93-133
    • /
    • 2019
  • Throughout history, there are three clues of dualistic structures for the development of Hong Kong's nativism. First, inward attribution and outward lookingare two paths to the formation of Hong Kong's nativism. In the dualistic framework of "self-others", nativism is formed. The formation path of "outward looking"can be seen everywhere in the construction history of Hong Kong's nativism. It is under the reflection of "two mirrors" with Britain and Chinese mainland that Hong Kong people acquire the concept of "Hong Kong's nativism". Second, there are two aspects of Hong Kong's nativism: economic and cultural aspect and political aspect. With the gradual development of Hong Kong's history, these two aspects come into being and are closely bound up, thus constituting Hong Kong's nativism today. The third clue is the most critical one. The subjectivity of colonization and decolonization are two different forms of Hong Kong people's subjectivity. These three clues run through the whole process of the construction of Hong Kong nativism, and are carried out in three stages of development: "Origin (1960s-1970s): Preliminary Construction of Hong Kong's Nativism", "Development of Hong Kong's Nativism (1980s-1997): Awakening of Political Aspect" and "Formation and Alienation of Hong Kong's Nativism (1997-present): Deformed "decolonization". Along the evolution of Hong Kong's nativism, with the disintegration of colonialism, Hong Kong people have gradually transited from the subjectivity of colonization to the subjectivity of decolonization, but the process of "decolonization" has not been completed up to now.When nativism loses its native complex from the perspective of "inherent in China", and further develops into the "separatism" of anti-constitutional system and anti-national continuity and unity, it will challenge the stability of the relationship between the central government and the Special Administrative Region under the "one country, two systems". At the same time, it will have a greater impact on the political structure and the rule of law system of Hong Kong, and trigger a series of public law problems that need to be solved urgently. In this regard, on the one hand, we should re-clarify the relationship between the central government and the region under the "one country, two systems" in light of the new situation of democratic political development in Hong Kong, and improve Hong Kong's governance mechanism on the basis of the constitution and the basic law; on the other hand, we should actively learn from the German defensive democracy system to systematically interpret, integrate and apply Hong Kong's existing legal resources so as to effectively curb the development of local separatist forces.

  • PDF

Cylindrocarpon destructans/Ilyonectria radicicola-species complex: Causative agent of ginseng root-rot disease and rusty symptoms

  • Farh, Mohamed El-Agamy;Kim, Yeon-Ju;Kim, Yu-Jin;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제42권1호
    • /
    • pp.9-15
    • /
    • 2018
  • Cylindrocarpon destructans/Ilyonectria radicicola is thought to cause both rusty symptom and root-rot disease of American and Korean ginseng. Root-rot disease poses a more serious threat to ginseng roots than rusty symptoms, which we argue result from the plant defense response to pathogen attack. Therefore, strains causing rotten root are characterized as more aggressive than strains causing rusty symptoms. In this review, we state 1- the molecular evidence indicating that the root-rot causing strains are genetically distinct considering them as a separate species of Ilyonectria, namely I. mors-panacis and 2- the physiological and biochemical differences between the weakly and highly aggressive species as well as those between rusty and rotten ginseng plants. Eventually, we postulated that rusty symptom occurs on ginseng roots due to incompatible interactions with the weakly aggressive species of Ilyonectria, by the established iron-phenolic compound complexes while root-rot is developed by I. morspanacis infection due to the production of high quantities of hydrolytic and oxidative fungal enzymes which destroy the plant defensive barriers, in parallel with the pathogen growth stimulation by utilizing the available iron. Furthermore, we highlight future areas for study that will help elucidate the complete mechanism of root-rot disease development.

Four active monomers from Moutan Cortex exert inhibitory effects against oxidative stress by activating Nrf2/Keap1 signaling pathway

  • Zhang, Baoshun;Yu, Deqing;Luo, Nanxuan;Yang, Changqing;Zhu, Yurong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권5호
    • /
    • pp.373-384
    • /
    • 2020
  • Paeonol, quercetin, β-sitosterol, and gallic acid extracted from Moutan Cortex had been reported to possess anti-oxidative, anti-inflammatory, and anti-tumor activities. This work aimed to illustrate the potential anti-oxidative mechanism of monomers in human liver hepatocellular carcinoma (HepG2) cells-induced by hydrogen peroxide (H2O2) and to evaluate whether the hepatoprotective effect of monomers was independence or synergy in mice stimulated by carbon tetrachloride (CCl4). Monomers protected against oxidative stress in HepG2 cells in a dose-response manner by inhibiting the generation of reactive oxygen species, increasing total antioxidant capacity, catalase and superoxide dismutase (SOD) activities, and activating the antioxidative pathway of nuclear factor E2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/Keap1) signaling pathway. We found that the in vitro antioxidant capacities of paeonol and quercetin were better than those of β-sitosterol and gallic acid. Furthermore, paeonol apparently diminished the levels of alanine transaminase and aspartate aminotransferase, augmented the contents of glutathione and SOD, promoted the expressions of Nrf2 and heme oxygenase-1 proteins in mice stimulated by CCl4. In HepG2 cells, paeonol, quercetin, β-sitosterol, and gallic acid play a defensive role against H2O2-induced oxidative stress through activating Nrf2/Keap1 pathway, indicating that these monomers have anti-oxidative properties. Totally, paeonol and quercetin exerted anti-oxidative and hepatoprotective effects, which is independent rather than synergy.

Transcriptome profiling and identification of functional genes involved in H2S response in grapevine tissue cultured plantlets

  • Ma, Qian;Yang, Jingli
    • Genes and Genomics
    • /
    • 제40권12호
    • /
    • pp.1287-1300
    • /
    • 2018
  • Hydrogen sulfide ($H_2S$), a small bioactive gas, has been proved functioning in plant growth and development as well as alleviation of abiotic stresses, which including promoting seed germination, accelerating embryonic root growth, regulating flower senescence, inducing stomatal closure, and defending drought, heat, heavy metals and osmotic stresses etc. However, the molecular functioning mechanism of $H_2S$ was still unclear. The primary objective of this research was to analyze the transcriptional differences and functional genes involved in the $H_2S$ responses. In details, 4-week-old plantlets in tissue culture of grapevine (Vitis vinifera L.) cultivar 'Zuoyouhong' were sprayed with 0.1 mM NaHS for 12 h, and then transcriptome sequencing and qRT-PCR analysis were used to study the transcriptional differences and functional genes involved in the $H_2S$ responses. Our results indicated that 650 genes were differentially expressed after $H_2S$ treatment, in which 224 genes were up-regulated and 426 genes were down-regulated. The GO enrichment analysis and KEGG enrichment analysis results indicated that the up-regulated genes after $H_2S$ treatment focused on carbon metabolism, biosynthesis of amino acids, and glycolysis/gluconeogenesis, and the down-regulated genes were mainly in metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction. Analyzing the transcription factor coding genes in details, it was indicated that 10 AP2/EREBPs, 5 NACs, 3 WRKYs, 3 MYBs, and 2 bHLHs etc. transcription factor coding genes were up-regulated, while 4 MYBs, 3 OFPs, 3 bHLHs, 2 AP2/EREBPs, 2 HBs etc. transcription factor coding genes were down-regulated. Taken together, $H_2S$ increased the productions in secondary metabolites and a variety of defensive compounds to improve plant development and abiotic resistance, and extend fruits postharvest shelf life by regulating the expression of AP2/EREBPs, WRKYs, MYBs, CABs, GRIP22, FERRITINs, TPSs, UGTs, and GHs etc.

In Vivo Characterization of Phosphotransferase-Encoding Genes istP and forP as Interchangeable Launchers of the C3',4'-Dideoxygenation Biosynthetic Pathway of 1,4-Diaminocyclitol Antibiotics

  • Nguyen, Lan Huong;Lee, Na Joon;Hwang, Hyun Ha;Son, Hye Bin;Kim, Hye Ji;Seo, Eun Gyo;Nguyen, Huu Hoang;Park, Je Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권3호
    • /
    • pp.367-372
    • /
    • 2019
  • Deactivation of aminoglycosides by their modifying enzymes, including a number of aminoglycoside O-phosphotransferases, is the most ubiquitous resistance mechanism in aminoglycoside-resistant pathogens. Nonetheless, in a couple of biosynthetic pathways for gentamicins, fortimicins, and istamycins, phosphorylation of aminoglycosides seems to be a unique and initial step for the creation of a natural defensive structural feature such as a 3',4'-dideoxy scaffold. Our aim was to elucidate the biochemical details on the beginning of these C3',4'-dideoxygenation biosynthetic steps for aminoglycosides. The biosynthesis of istamycins must surely involve these 3',4'-didehydroxylation steps, but much less has been reported in terms of characterization of istamycin biosynthetic genes, especially about the phosphotransferase-encoding gene. In the disruption and complementation experiments pointing to a putative gene, istP, in the genome of wild-type Streptomyces tenjimariensis, the function of the istP gene was proved here to be a phosphotransferase. Next, an in-frame deletion of a known phosphotransferase-encoding gene forP from the genome of wild-type Micromonospora olivasterospora resulted in the appearance of a hitherto unidentified fortimicin shunt product, namely 3-O-methyl-FOR-KK1, whereas complementation of forP restored the natural fortimicin metabolite profiles. The bilateral complementation of an istP gene (or forP) in the ${\Delta}forP$ mutant (or ${\Delta}istP$ mutant strain) successfully restored the biosynthesis of 3',4'-dideoxy fortimicins and istamycins, thus clearly indicating that they are interchangeable launchers of the biosynthesis of 3',4'-dideoxy types of 1,4-diaminocyclitol antibiotics.

The Effect of Cucumber mosaic virus 2b Protein to Transient Expression and Transgene Silencing Mediated by Agro-infiltration

  • Choi, Min-Sue;Yoon, In-Sun;Rhee, Yong;Choi, Seung-Kook;Lim, Sun-Hyung;Won, So-Youn;Lee, Yeon-Hee;Choi, Hong-Soo;Lee, Suk-Chan;Kim, Kook-Hyung;Lomonossoff, George;Sohn, Seong-Han
    • The Plant Pathology Journal
    • /
    • 제24권3호
    • /
    • pp.296-304
    • /
    • 2008
  • The transient and rapid expression system of a foreign protein in planta is a very useful technique in biotechnology application. We have investigated optimum condition of Agrobacterium-infiltration technique in which expression level of foreign proteins were maximized without detrimental effects on plants using GFP and Cucumber mosaic virus 2b protein, which is known as an enhancer of gene expression and a suppressor of post-transcriptional gene silencing(PTGS). The optimum expression level of both RNA and protein of GFP with minimum leaf impairment was obtained at $OD_{600}$=0.2 of Agrobactrium inocula. The steady-state levels of GFP RNA and protein generally peaked at 3 and 7 days post-infiltration(dpi), respectively. In the presence of 2b, both the magnitude and duration of GFP expression was highly increased and we could detect GFP level until 17 dpi. On the other hands, the 2b-mediated higher accumulation of foreign proteins resulted in the repression of normal leaf growth, possibly due to the limitation of supply of energy or materials required for growth maintenance. Using this Agrobacterium-infiltration system with 2b and GFP, we tested a hypothesis for the threshold model of PTGS initiation. Four GFP transgenic lines of N. benthamiana, which shows different expression level of GFP were tested to determine the threshold level for PTGS initiation. Agrobacterium-infiltration of GFP into those GFP-transgenic plants resulted in the co-silencing of the transgenic GFP. It was found that very low concentration of Agrobacterium with GFP and GFP+2b($OD_{600}$=0.002-0.02) which could not phenotypically induce an additive GFP expression, was enough to trigger PTGS pathway in all GFP transgenic plants. This strongly indicates that each GFP-transgenic plant should be expressing the transgenic GFP at its own pre-determined level and there was no buffer zone of additive GFP-expression to the threshold. In other words, the PTGS seems to be immediately activated as a self-defensive mechanism if an internal balance of gene expression is broken.

($Interferon-{\gamma}$)가 마우스 조골세포의 생물학적 활성에 미치는 영향에 관한 연구 (Effects Of $Interferon-{\gamma}$ On The Biological Activity Of Mouse Osteoblast MC3T3/E1 Cells In Culture)

  • 이관훈;김정근;정진형
    • Journal of Periodontal and Implant Science
    • /
    • 제26권1호
    • /
    • pp.216-229
    • /
    • 1996
  • Interferon(IFN) is a sort of glycoproteins that are produced by activated lymphocyte, monocyte and fibroblast. IFN has anti-viral effects, immuno-defensive mechanism and regulating properties to the several kinds of cells that includes affect on the bone formation and resorption. The effect of IFN on the osteoclast & other tissue cells has been studied in a number of researchers with the limited reports on the osteoblast. The purpose of this study was to evaluate the effects of IFN on the osteoblastic function. The MC3T3/El cell(Mouse osteoblast) was incubated in ${\alpha}-minimum$ essential medium containing 10% FBS. To detect the cytotoxic effect of $IFN-{\gamma}$ on osteoblast, the cells were cultured in 96-well plate to which $IFN-{\gamma}$ of various concentrations were added for 2 days. After staining with trypan blue, total cells and living cells were counted under microscope. To determine the activity of alkaline phosphataset(ALP), various concentrations of $IFN-{\gamma}$ were treated to culture medium, and biochemical assay was performed. $IFN-{\gamma}$ and $IFN-{\gamma}$ plus cycloheximide were added to culture medium separately and then ALP activity were determined. To detect the effect of the $IFN-{\gamma}$ on the bone formation of osteoblast, long-term culture was performed, and calcified nodule formation were observed using von Kossa's staining. After the addition of $IFN-{\gamma}$ with various concentrations to the medium, no cytotoxic effect of $IFN-{\gamma}$ was detected at any concentration. The significant increase in ALP activity of osteoblast were found the concentration of $IFN-{\gamma}$ 500-2500U/ml and the culture time of 24-48 hours respectively. The enhancement of ALP activity by $IFN-{\gamma}$ of osteoblast was decreased significantly by the treatment of cycloheximide. After long-term culture of osteoblast, the nodule formation was found to be increased in number and density by the addition of 500 U/ml $IFN-{\gamma}$. These results suggest that $IFN-{\gamma}$ was affected on the bone formation of osteoblast. Forthemore this kind of study or $IFN-{\gamma}$ to osteoblast will be held continuously.

  • PDF

생리, 약학적 관점에서 fibroblast growth factor 21 (FGF21)의 대사 효과 고찰 (The Metabolic Effects of FGF21: From Physiology to Pharmacology)

  • 송박용
    • 생명과학회지
    • /
    • 제30권7호
    • /
    • pp.640-650
    • /
    • 2020
  • 간, 췌장 및 지방 조직에서 많은 수준으로 합성되는 섬유 아세포 성장 인자 21(FGF21)은 FGF19과 FGF23와 함께 FGF 패밀리의 비정형 구성원에 속해 있다. FGF21은 발현 조직에 따라 endo/paracrine특징을 보여주며, 포도당 대사 및 에너지 항상성을 포함하는 많은 종류의 대사 경로를 조절하고 있다. 생리학적 조건 하에서 많은 종류의 스트레스가 조직 별 FGF21의 합성을 유도한다고 알려져 있고, 이렇게 증가한 FGF21은 위와 같은 스트레스에 적응하거나 방어하기 위한 세포 내 기전을 활성화 시키게 된다. 이 과정에서 peroxisome proliferator-activated receptor gamma (PPARγ) 및 peroxisome proliferator-activated receptor alpha (PPARα)가 지방 및 간 조직에서 FGF21의 발현을 조절하는 대표적인 전사 조절자로 알려져 있다. 지난 10년간의 연구를 통해 약리학적 FGF21 투여는 체중을 감소시키고 비만 마우스 및 2 형 당뇨병 환자에서 인슐린 감수성 및 지단백질 프로파일을 개선시키는 것으로 보고되었고, 이를 바탕으로 FGF21은 제 2 형 당뇨병, 비만 및 비 알콜 성 지방간 질환(NAFLD)의 치료제로서 큰 주목을 받아 왔다. 그러나 조직 별 상이한 FGF21 발현의 역설적 조건 및 생리 약학적 기능의 차이로 인해 FGF21의 이해는 여전히 부족한 수준에 있다. 따라서 본 총설을 통해 FGF21의 조직 특정 기능 및 해당 동작 메커니즘을 포함한 이전 연구들에서 발생하였던 흥미로운 문제를 논의하고, FGF21 아날로그를 이용한 임상 시험의 현 상황을 요약하고자 한다.

리그닌 생합성에서 cinnamyl alcohol dehydrogenase (CAD) 유전자 family의 조절 (Regulation of Cinnamyl Alcohol Dehydrogenase (CAD) Gene Family in Lignin Biosynthesis)

  • 김영화;허경혜
    • 생명과학회지
    • /
    • 제31권10호
    • /
    • pp.944-953
    • /
    • 2021
  • 리그닌은 식물의 세포벽에 풍부하게 존재하는 복잡한 phenylpropanoid 중합체이다. 주로 물 수송과 기계적 강도를 유지하는 조직에 존재하며 수분을 운반하거나, 기계적인 지지를 담당한다. 또한, 리그닌은 병원균의 감염이나 상처에 대한 물리적인 장벽으로 작용함으로써 방어 기작에 관여한다. 리그닌을 생성하는 모노리그놀 전구체는 cinnamyl alcohol dehydrogenase (CAD) 유전자에 의해 합성된다. CAD는 cinnamaldehyde를 cinnamyl alcohol(p-coumaryl, coniferyl, sinapyl alcohol)로 전환하는 효소이다. CAD는 속씨식물에서 multigenic family로 존재하며 여러 식물 종에서 다른 기능을 가진 CAD isoform이 밝혀졌다. CAD 유전자의 여러 isoform은 식물의 발달 및 환경 신호에 따라 다르게 발현되었다. 하나의 isoform이 발달 리그닌화에 관여하는 반면, 다른 isoform은 방어 리그닌 및 기타 세포벽에 결합된 페놀의 구성에 영향을 미칠 수 있음을 보여주었다. CAD isoform에 따라 기질 특이성이 다르게 나타나고, 이는 리그닌 합성을 조절하는 CAD 단백질의 생화학적 특성을 나타내는데 기여한다. 본 논문에서는 리그닌 생합성에서 CAD multigenic family 유전자의 발현과 조절에 대하여 설명하였다. CAD multigenic family의 isoform들은 유전적 조절이 복잡하고, 식물 발달 과정의 신호 경로와 스트레스 반응이 밀접하게 연동되어 있다. CAD 유전자에 의한 모노리그놀 합성은 발달 및 환경 신호에 의해 조절될 가능성이 높다.