Browse > Article
http://dx.doi.org/10.1016/j.jgr.2017.01.004

Cylindrocarpon destructans/Ilyonectria radicicola-species complex: Causative agent of ginseng root-rot disease and rusty symptoms  

Farh, Mohamed El-Agamy (Graduate School of Biotechnology and Ginseng Bank, College of Life Science, Kyung Hee University)
Kim, Yeon-Ju (Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University)
Kim, Yu-Jin (Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University)
Yang, Deok-Chun (Graduate School of Biotechnology and Ginseng Bank, College of Life Science, Kyung Hee University)
Publication Information
Journal of Ginseng Research / v.42, no.1, 2018 , pp. 9-15 More about this Journal
Abstract
Cylindrocarpon destructans/Ilyonectria radicicola is thought to cause both rusty symptom and root-rot disease of American and Korean ginseng. Root-rot disease poses a more serious threat to ginseng roots than rusty symptoms, which we argue result from the plant defense response to pathogen attack. Therefore, strains causing rotten root are characterized as more aggressive than strains causing rusty symptoms. In this review, we state 1- the molecular evidence indicating that the root-rot causing strains are genetically distinct considering them as a separate species of Ilyonectria, namely I. mors-panacis and 2- the physiological and biochemical differences between the weakly and highly aggressive species as well as those between rusty and rotten ginseng plants. Eventually, we postulated that rusty symptom occurs on ginseng roots due to incompatible interactions with the weakly aggressive species of Ilyonectria, by the established iron-phenolic compound complexes while root-rot is developed by I. morspanacis infection due to the production of high quantities of hydrolytic and oxidative fungal enzymes which destroy the plant defensive barriers, in parallel with the pathogen growth stimulation by utilizing the available iron. Furthermore, we highlight future areas for study that will help elucidate the complete mechanism of root-rot disease development.
Keywords
Cylindrocarpon destructans; I. radicicola-species complex; Panax ginseng; root-rot; rusty root;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Yang D-C, Kim Y-H, Yun K-Y, Lee S-S, Kwon J-N, Kang H-M. Red-colored phenomena of ginseng (Panax ginseng C. A. Meyer): root and soil environment. J Ginseng Sci 1997;21:91-7.
2 Punja ZK, Wan A, Goswami RS, Verma N, Rahman M, Barasubiye T, Seifert KA, Levesque CA. Diversity of Fusarium species associated with discolored ginseng roots in British Columbia. Can J Plant Pathol 2007;29:340-53.   DOI
3 Reeleder RD, Hoke SMT, Zhang Y. Rusted root of ginseng (Panax quinquefolius) is caused by a species of Rhexocercosporidium. Phytopathology 2006;96:1243-54.   DOI
4 Choi JE, Ryuk JA, Kim JH, Choi CH, Chun JS, Kim YJ, Lee HB. Identification of endophytic bacteria isolated from rusty-colored root of Korean ginseng (Panax ginseng) and its induction. Korean J Med Crop Sci 2005;13:1-5.
5 Pathrose B, Jones EE, Jaspers MV, Ridgway HJ. High genotypic and virulence diversity in Ilyonectria liriodendri isolates associated with black foot disease in New Zealand vineyards. Plant Pathol 2014;63:613-24.   DOI
6 Crombie WML, Crombie L, Green JB, Lucas JA. Pathogenicity of the take all fungus to oats: its relationship to the concentration and detoxification of the four avenacins. Phytochemistry 1986;25:2075-83.   DOI
7 Fewell AM, Roddick JG. Interactive antifungal activity of the glycoalkaloid solanine and chaconine. Phytochemistry 1993;33:323-8.   DOI
8 Morrissey JP, Osbourn AE. Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev 1999;63:708-24.
9 Papadopoulou K, Melton RE, Leggett M, Daniels MJ, Osbourn AE. Compromised disease resistance in saponin-deficient plants. Proc Natl Acad Sci 1999;96:12923-8.   DOI
10 Nicol RW, Traquair JA, Bernards MA. Ginsenosides as host resistance factors in American ginseng (Panax quinquefolius). Can J Bot 2002;80:557-62.   DOI
11 Hildebrand AA. Root rot of ginseng in Ontario caused by members of the genus Ramularia. Can J Res 1935;12:82-114.   DOI
12 Bobev SG, Baeyen S, Crepel C, Maes M. First report of Phytophthora cactorum on American ginseng (Panax quinquefolius) in Bulgaria. Plant Dis 2003;87:752.
13 Hill SN, Hausbeck, MK. Virulence and fungicide sensitivity of Phytophthora cactorum isolated from American ginseng gardens in Wisconsin and Michigan 2008;92:1183-1189.   DOI
14 Reeleder RD, Brammall RA. Pathogenicity of Pythium species, Cylindrocarpon destructans, and Rhizoctonia solani to ginseng seedlings in Ontario. Can J Plant Pathol 1994;16:311-6.   DOI
15 Reeleder RD, Roy R, Capell B. Seed and root rots of ginseng (Panax quinquefolius L) caused by Cylindrocarpon destructans and Fusarium spp. J Ginseng Res 2002;26:151-8.   DOI
16 Rahman M, Punja ZK. Biochemistry of ginseng root tissues affected by rusty root symptoms 2005;43:1103-1114.   DOI
17 Rahman M, Punja ZK. Factors influencing development of root rot on ginseng caused by Cylindrocarpon destructans. Phytopathology 2005;95:1381-90.   DOI
18 Cabral A, Groenewald JZ, Rego C, Oliveira H, Crous PW. Cylindrocarpon root rot: multi-gene analysis reveals novel species within the Ilyonectria radicicolaspecies complex. Mycol Prog 2012;11:655-88.   DOI
19 Chung HS. Ginseng disease. Research reports of the Korean Society of Plant Protection. Seoul: Korean Society of Plant Protection; 1979. p. 107-44.
20 Zinnsmeister CL. Ramularia root-rots of ginseng. Phytopathology 1918;8:557-71.
21 Punja ZK, Wan A, Goswami RS. Root rot and distortion of ginseng seedling roots caused by Fusarium oxysporum. Can J Plant Pathol 2008;30:565-74.   DOI
22 Wollenweber HW. Ramularia, Mycosphaerella, Nectria, Calonectria. Phytopathology 1913;3:197-242.
23 Kennedy DO, Scholey AB. Ginseng: potential for the enhancement of cognitive performance and mood. Pharmacol Biochem Behav 2003;75:687-700.   DOI
24 Kim YJ, Jeon JN, Jang MG, Oh JY, Kwon WS, Jung SK, Yang DC. Ginsenoside profiles and related gene expression during foliation in Panax ginseng Meyer. J Ginseng Res 2013;38:66-72.
25 Leung KW, Wong AS. Pharmacology of ginsenosides: a literature review. Chin Med 2010;5:20. http://dx.doi.org/10.1186/1749-8546-5-20.   DOI
26 Wen J, Zimmer EA. Phylogeny and biogeography of Panax L. (the ginseng genus, Araliaceae): inferences from ITS sequences of nuclear ribosomal DNA. Mol Phylogenet Evol 1996;6:167-77.   DOI
27 Choi HK, Wen L. A phylogenetic analysis of Panax (Araliaceae): Integrating cpDNA restriction site and nuclear rDNA ITS sequence data. Plant Syst Evol 2000;224:109-20.   DOI
28 Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685-93.   DOI
29 Lu JM, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 2009;7:293-302.   DOI
30 Proctor JTA, Bailey WG. Ginseng: Industry, botany and culture. Hortic Rev 1987;9:187-236.
31 Howard RJ, Garland JA, Seaman WL. Diseases and pests of vegetable crops in Canada: an illustrated compendium. Entomological Society of Canada & Canadian Phytopathological Society; 1994.
32 Putnam ML, du Toit LJ. First report of Alternaria blight caused by Alternaria panax on ginseng (Panax quinquefolius) in Oregon and Washington, USA. Plant Pathol 2003;52:406.   DOI
33 Kim YC, Lee JH, Bae YS, Sohn BK, Park SK. Development of effective environmentally-friendly approaches to control Alternaria blight and anthracnose diseases of Korean ginseng. Eur J Plant Pathol 2010;127:443-50.   DOI
34 Cho H-S, Jeon Y-H, Do G-R, Cho D-H, Yu Y-H. Mycological characteristics of Botrytis cinerea causing gray mold on ginseng in Korea. J Ginseng Res 2008;32: 26-32.   DOI
35 Takimoto S. Colletotrichum panacicola Uyeda and Takimoto. Chosen Nokwai ho 1919;14:24-5 (In Japanase).
36 Chung HS, Bae HW. Ginseng anthracnose in Korea: Factors affecting primary inoculum, growth of the pathogen, disease development and control. Korean J Plant Prot 1979;18:35-41.
37 Darmono TW, Owen ML, Parke JL. Isolation and pathogenicity of Phytophthora cactorum from forest and ginseng garden soils in Wisconsin. Plant Dis 1991;75(6):610-2.   DOI
38 Grafenhan T, Schroers H-J, Nirenberg HI, Seifert KA. An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutellax. Stud Mycol 2011;68:79-113.   DOI
39 Ohh SH, Yu YH, Kim KH, Cho DH. Studies on control of soil-borne diseases and insects of ginseng and development of antifungal compound. In: Ginseng cultivation bulletin. Korea Ginseng and Tobacco Research Inst.; 1992. p. 121-84.
40 Yu YH, Ohh SH. Research on ginseng diseases in Korea. Korean J Ginseng Sci 1993;17:61-8.
41 Ziezold M, Reeleder RD, Hall R, Proctor JTA. Effect of drenching soil with benomyl, propiconazole, and fluazinam on incidence of disappearing root rot of ginseng. J Ginseng Res 1998;22:237-43.
42 Lombard L, Crous PW, Wingfield BD, Wingfield MJ. Phylogeny and systematics of the genus Calonectria. Stud Mycol 2010;66:31-69.   DOI
43 Schroers H-J, Grafenhan T, Nirenberg HI, Seifert KA. A revision of Cyanonectria and Geejayessia gen. nov., and related species with Fusarium-like anamorphs. Stud Mycol 2011;68:115-38.   DOI
44 Hankins A. Producing and Marketing Wild Simulated Ginseng in Forest and Agroforestry Systems. Produced by Communications and Marketing, College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University; 2009.
45 Lee C, Kim KY, Lee JE, Kim S, Ryu D, Choi JE, An G. Enzymes hydrolyzing structural components and ferrous ion cause rusty-root symptom on ginseng (Panax ginseng). J Microbiol Biotechnol 2011;21:192-6.   DOI
46 Seifert KA, McMullen CR, Yee D, Reeleder RD, Dobinson KF. Molecular differentiation and detection of ginseng-adapted isolates of the root rot fungus Cylindrocarpon destructans. Phytopathology 2003;93:1533-42.   DOI
47 Lee SS. Korean ginseng (ginseng cultivation), Korean ginseng and T. Research institute 2007;18-40.
48 Rahman M, Punja ZK. Influence of iron on Cylindrocarpon root rot development on ginseng. Phytopathology 2006;96:1179-87.   DOI
49 Stoltz LP. Mineral nutrition studies of American ginseng. Lexington: Ky: In Pro. 4th Natl. Ginseng Conf.; 1982.
50 Kim JH, Kim SG, Kim MS, Jeon YH, Cho DH, Kim YH. Different structural modifications associated with development of ginseng root rot caused by Cylindrocarpon destructans. Plant Pathol J 2009;25:1-5.   DOI
51 Brayford D, Honda BM, Mantiri FR, Samuels GJ. Neonectria and Cylindrocarpon: the Nectria mammoidea group and species lacking microconidia. Mycologia 2004;96:572-97.   DOI
52 Samuels GJ, Brayford D. Variation in Nectria radicicola and its anamorph, Cylindrocarpon destructans. Mycol Res 1990;94:433-42.   DOI
53 Rossman AY, Samuels GJ, Rogerson CT, Lowen R. Genera of the Bionectriaceae, Hypocreaceae and Nectriaceae (Hypocreales, Ascomycetes). Stud Mycol 1999;42:1-248.
54 Mantiri FR, Samuels GJ, Rahe JE, Honda BM. Phylogenetic relationships in Neonectria species having Cylindrocarpon anamorphs inferred from mitochondrial ribosomal DNA sequences. Can J Bot 2001;79:334-40.
55 Booth C. Studies of pyrenomycetes. IV. Nectria (part 1). Myc Papers 1959;73: 1-115.
56 Samuels GJ, Brayford D. Species of Nectria (sensu lato). with red perithecia and striate ascospores. Sydowia 1994;46:75-161.
57 Brayford D, Samuels GJ. Some didymosporous species of Nectria with nonmicroconidial Cylindrocarpon anamorphs. Mycologia 1993;85:612-37.   DOI
58 Chaverri P, Salgado C, Hirooka Y, Rossman AY, Samuels GJ. Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon like anamorphs. Stud Mycol 2011;68:57-78.   DOI
59 Booth C. Nectria radicicola. C.M.I. Descriptions of Pathogenic Fungi and Bacteria 1967;148:1-2.
60 Osbourn A. Saponins and plant defence - a soap story. Trends in Plant Sci 1996;1:4-9.   DOI
61 Yousef LF, Bernards MA. In vitro metabolism of ginsenosides by the ginseng root pathogen Pythium irregulare. Phytochemistry 2006;67(16):1740-9.   DOI
62 Shah K, Kumar RG, Verma S, Dubey RS. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 2001;161:1135-44.   DOI
63 Crous PW, Slippers B, Wingfield MJ, Rheeder J, Marasas WFO, Philips AJL, Alves A, Burgess T, Barber P, Groenewald JZ. Phylogenetic lineages in the Botryosphaeriaceae. Stud Mycol 2006;55:235-53.   DOI
64 Crous PW, Schoch CL, Hyde KD, Wood AR, Gueidan C, de Hoog GS, Groenewald JZ. Phylogenetic lineages in the Capnodiales. Stud Mycol 2009;64:17-47.   DOI
65 Booth C. The genus Cylindrocarpon. Myc Papers 1966;104:1-56.
66 Nicol RW, Yousef L, Traquair JA, Bernards MA. Ginsenosides stimulate the growth of soilborne pathogens of American ginseng. Phytochemistry 2003;64:257-64.   DOI
67 Ivanov DA, Bernards MA. Ginsenosidases and the pathogenicity of Pythium irregulare. Phytochemistry 2012;78:44-53.   DOI
68 Sharma P, Dubey RS. Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep 2007;26:2027-38.   DOI
69 Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012;2012:26.
70 Shlezinger N, Minz A, Gur Y, Hatam I, Dagdas YF, Talbot NJ, Sharon A. Antiapoptotic machinery protects the necrotrophic fungus Botrytis cinerea from host-induced apoptotic-like cell death during plant infection. PLoS Pathog 2011;7:e1002185.   DOI
71 Hemetsberger C, Herrberger C, Zechmann B, Hillmer M, Doehlemann G. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathog 2012;8:e1002684.   DOI