• Title/Summary/Keyword: Defense Science & Technology

Search Result 1,848, Processing Time 0.028 seconds

Analyzing the Performance of Defense R&D Projects based on DEA (자료포락분석을 활용한 국방핵심기술 연구개발사업의 성과 분석)

  • Lim, Yonghwan;Jeon, Jeonghwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.106-123
    • /
    • 2019
  • Demand for performance analysis is increasing for efficient use of limited budgets such as improving investment efficiency and strategic budget allocation in accordance with the continuous increase demand of R&D budget for developing advanced weapon systems in the future battlefields. In accordance with the Act on the Performance Evaluation and Performance Management of the National R&D Projects established in March 2006, the performance analysis has been conducted for the systematic management and utilization of the R&D project performance. It was recognized as a project to achieve self-defense through strengthening the weapons system development capability, however, efficiency evaluation of Defense R&D projects was not much emphasized. Research on the efficiency analysis of defense R&D projects has been conducted in recent years, but most studies focused on corporate efficiency and productivity of defense companies. In this study, we analyzed the three-stage performance of defence R&D projects based on the logical model using the data envelope analysis(DEA) model. We also analyzed performance analysis from various perspectives through R&D type, technology classification and performance model. This study is expected to help defense department improve defense R&D projects and make decision.

The Development of Evaluation Indicators for the Performance of Defense Core-Technology R&D Projects Using SMR/AHP (SMR/AHP 기법을 활용한 국방핵심기술 연구개발사업 성과평가지표 개발)

  • Lee, Hyung-Jun;Kim, Chan-Soo;Kim, Woo-Je
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.70-79
    • /
    • 2009
  • Currently, the investment on Research and Development(R&D) for defense core technology is continuously increasing to maintain advanced country's R&D level. In accordance with this trend, the national defense R&D investment management system is being more strengthening, and importance of performance evaluation is being emphasized more and more. However, the existing indicators of performance evaluation for defense core technology R&D is limited in efficient management because of the qualitative evaluation items and subjective allocation of points. In this paper, we developed a novel indicator for defense core technology R&D performance evaluation through domestic and foreign related literature and inquiry, brainstorming, and analysis techniques by Stepwise Multiple linear Regression(SMR) and Analytic Hierarchy Process(AHP). And we verified effectiveness of proposed indicators of performance evaluation by comparing with the existing evaluation indicators. Our proposed indicators for performance evaluation will create superiority performance on defense R&D fields.

Preparation and Microwave Absorption Properties of the Fe/TiO2/Al2O3 Composites

  • Li, Yun;Cheng, Haifeng;Wang, Nannan;Zhou, Shen;Xie, Dongjin;Li, Tingting
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850125.1-1850125.12
    • /
    • 2018
  • To reduce the imbalance of impedance matching between the magnetic metal nanowires and free space, $Fe/TiO_2$ core/shell nanowire arrays with different diameters were fabricated in the templates of anodic aluminum oxide membranes by electrodeposition. The influences of the microstructure on the microwave absorption properties of the $Fe/TiO_2/Al_2O_3$ composites were studied by the transmission/reflection waveguide method. It was demonstrated experimentally that both the interfacial polarization and the diameter of the $Fe/TiO_2$ core/shell nanowires have critical effects on the microwave absorption properties. We also investigated the angle dependence of the microwave absorption properties. Due to the interfacial polarization and associated relaxation, the $Fe/TiO_2/Al_2O_3$ composites exhibited optimal microwave absorption properties when microwave propagation direction was accordant with the axis of the nanowires. Finally, we managed to obtain an optimal reflection loss of below -10 dB (90% absorption) over 10.2-14.8 GHz, with a thickness of 3.0 mm and the minimum value of -39.4 dB at 11.7 GHz.

Correlation between Dielectric Constant Change and Oxidation Behavior of Silicon Nitride Ceramics at Elevating Temperature up to 1,000 ℃ (질화규소 세라믹스의 고온(~1,000 ℃) 유전상수 변화와 산화 거동의 상관관계 고찰)

  • Seok-Min, Yong;Seok-Young, Ko;Wook Ki, Jung;Dahye, Shin;Jin-Woo, Park;Jaeho, Choi
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.580-585
    • /
    • 2022
  • In this study, the high-temperature dielectric constant of Si3N4 ceramics, a representative non-oxide-based radome material, was evaluated and the cause of the dielectric constant change was analyzed in relation to the oxidation behavior. The dielectric constant of Si3N4 ceramics was 7.79 at room temperature, and it linearly increased as the temperature increased, showing 8.42 at 1,000 ℃. As results of analyzing the microstructure and phase for the Si3N4 ceramics before and after heat-treatment, it was confirmed that oxidation did not occur at all or occurred only on the surface at a very insignificant level below 1,000 ℃. Based on this, it is concluded that the increase in the dielectric constant according to the temperature increase of Si3N4 ceramics is irrelevant to the oxidation behavior and is only due to the activation of charge polarization.

Multi-Class Multi-Object Tracking in Aerial Images Using Uncertainty Estimation

  • Hyeongchan Ham;Junwon Seo;Junhee Kim;Chungsu Jang
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.115-122
    • /
    • 2024
  • Multi-object tracking (MOT) is a vital component in understanding the surrounding environments. Previous research has demonstrated that MOT can successfully detect and track surrounding objects. Nonetheless, inaccurate classification of the tracking objects remains a challenge that needs to be solved. When an object approaching from a distance is recognized, not only detection and tracking but also classification to determine the level of risk must be performed. However, considering the erroneous classification results obtained from the detection as the track class can lead to performance degradation problems. In this paper, we discuss the limitations of classification in tracking under the classification uncertainty of the detector. To address this problem, a class update module is proposed, which leverages the class uncertainty estimation of the detector to mitigate the classification error of the tracker. We evaluated our approach on the VisDrone-MOT2021 dataset,which includes multi-class and uncertain far-distance object tracking. We show that our method has low certainty at a distant object, and quickly classifies the class as the object approaches and the level of certainty increases.In this manner, our method outperforms previous approaches across different detectors. In particular, the You Only Look Once (YOLO)v8 detector shows a notable enhancement of 4.33 multi-object tracking accuracy (MOTA) in comparison to the previous state-of-the-art method. This intuitive insight improves MOT to track approaching objects from a distance and quickly classify them.

Self-Collision Detection/Avoidance for a Rescue Robot by Modified Skeleton Algorithm (보완 골격 알고리듬을 이용한 구난로봇의 자체 충돌감지/회피)

  • Lee, Wonsuk;Hong, Seongil;Park, Gyuhyun;Kang, Younsik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.451-458
    • /
    • 2015
  • This paper handles self-collision avoidance for a rescue robot with redundant manipulators. In order to detect all available self-collisions in advance, minimum distances between arbitrary robot parts should be monitored in real-time. For the minimum distance estimation, we suggest a modified method from a previous skeleton algorithm which has less computation burden and realize collision avoidance based on a potential function using the proposed algorithm. The resultant command by collision avoidance should not disturb a given primary task, so null-space of joint solution from a CLIK is utilized for collision avoidance by a gradient projection method.

SAR Recognition of Target Variants Using Channel Attention Network without Dimensionality Reduction (차원축소 없는 채널집중 네트워크를 이용한 SAR 변형표적 식별)

  • Park, Ji-Hoon;Choi, Yeo-Reum;Chae, Dae-Young;Lim, Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.219-230
    • /
    • 2022
  • In implementing a robust automatic target recognition(ATR) system with synthetic aperture radar(SAR) imagery, one of the most important issues is accurate classification of target variants, which are the same targets with different serial numbers, configurations and versions, etc. In this paper, a deep learning network with channel attention modules is proposed to cope with the recognition problem for target variants based on the previous research findings that the channel attention mechanism selectively emphasizes the useful features for target recognition. Different from other existing attention methods, this paper employs the channel attention modules without dimensionality reduction along the channel direction from which direct correspondence between feature map channels can be preserved and the features valuable for recognizing SAR target variants can be effectively derived. Experiments with the public benchmark dataset demonstrate that the proposed scheme is superior to the network with other existing channel attention modules.

A Simulator Development of Surface Warship Torpedo Defense System considering Bubble-Generating Wake Decoy (기포발생식 항적기만기를 고려한 수상함 어뢰방어체계 시뮬레이터 개발)

  • Wooshik Kim;Myoungin Shin;Jisung Park;Ho Seuk Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.416-427
    • /
    • 2024
  • The wake-homing underwater guided weapon that detects and tracks wake generated during voyage of a surface ship is impossible to avoid with the present acoustic deception torpedo defense system. Therefore, research on bubble-generating wake decoy is necessary to deceive wake-homing underwater guided weapon. Experiments in various environments are required to verify the effective operation method and performance of the wake decoy, but performance verification through underwater experiment is limited. In this paper, we develop a simulator for an torpedo defense system of surface ship, which is applied bubble-generating wake decoy, against acoustic, wake, and hybrid homing underwater guided weapon attack. The simulator includes surface ship model, acoustic decoy(static, mobile) model, bubble-generating wake decoy model, search and motion model of underwater guided weapon and so on. By integrating various models, MATLAB GUI simulator was developed. Through the simulation results for various environmental variables by this simulator, it is judged that effective operation method and performance verification of the bubble-generating wake decoy can be performed.

Rethinking of the Uncertainty: A Fault-Tolerant Target-Tracking Strategy Based on Unreliable Sensing in Wireless Sensor Networks

  • Xie, Yi;Tang, Guoming;Wang, Daifei;Xiao, Weidong;Tang, Daquan;Tang, Jiuyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.6
    • /
    • pp.1496-1521
    • /
    • 2012
  • Uncertainty is ubiquitous in target tracking wireless sensor networks due to environmental noise, randomness of target mobility and other factors. Sensing results are always unreliable. This paper considers unreliability as it occurs in wireless sensor networks and its impact on target-tracking accuracy. Firstly, we map intersection pairwise sensors' uncertain boundaries, which divides the monitor area into faces. Each face has a unique signature vector. For each target localization, a sampling vector is built after multiple grouping samplings determine whether the RSS (Received Signal Strength) for a pairwise nodes' is ordinal or flipped. A Fault-Tolerant Target-Tracking (FTTT) strategy is proposed, which transforms the tracking problem into a vector matching process that increases the tracking flexibility and accuracy while reducing the influence of in-the-filed factors. In addition, a heuristic matching algorithm is introduced to reduce the computational complexity. The fault tolerance of FTTT is also discussed. An extension of FTTT is then proposed by quantifying the pairwise uncertainty to further enhance robustness. Results show FTTT is more flexible, more robust and more accurate than parallel approaches.

A Study on General-Standard Conformance Test Framework and Methodology of Defense Information Technical Standard (국방정보기술표준 일반 표준적합성시험 프레임워크 및 방법론 연구)

  • Seo, Minwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.744-751
    • /
    • 2016
  • Interoperability tests are required to determine whether network-based defense systems successfully share and exchange certain services, information, and data. We must examine various aspects of interoperability. The DITA (Defense Information Technical stAndard) is the basis for interoperability. However, DITA is being applied to the defense system in a state that the standard test methods and procedures are not established. And there is no test method and procedure of the DITA well applicable to military weapons systems or information systems. Therefore, in this paper, we propose a framework that includes procedures, methodologies, so as to test whether a standard is applied to the DITA in terms of Standard Conformance Test.