• Title/Summary/Keyword: Defense Response

Search Result 784, Processing Time 0.027 seconds

DNA Damage Triggers the Activation of Immune Response to Viral Pathogens via Salicylic Acid in Plants

  • Hwi-Won Jeong;Tae Ho Ryu;Hyo-Jeong Lee;Kook-Hyung Kim;Rae-Dong Jeong
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.449-465
    • /
    • 2023
  • Plants are challenged by various pathogens throughout their lives, such as bacteria, viruses, fungi, and insects; consequently, they have evolved several defense mechanisms. In addition, plants have developed localized and systematic immune responses due to biotic and abiotic stress exposure. Animals are known to activate DNA damage responses (DDRs) and DNA damage sensor immune signals in response to stress, and the process is well studied in animal systems. However, the links between stress perception and immune response through DDRs remain largely unknown in plants. To determine whether DDRs induce plant resistance to pathogens, Arabidopsis plants were treated with bleomycin, a DNA damage-inducing agent, and the replication levels of viral pathogens and growth of bacterial pathogens were determined. We observed that DDR-mediated resistance was specifically activated against viral pathogens, including turnip crinkle virus (TCV). DDR increased the expression level of pathogenesis-related (PR) genes and the total salicylic acid (SA) content and promoted mitogen-activated protein kinase signaling cascades, including the WRKY signaling pathway in Arabidopsis. Transcriptome analysis further revealed that defense-and SA-related genes were upregulated by DDR. The atm-2atr-2 double mutants were susceptible to TCV, indicating that the main DDR signaling pathway sensors play an important role in plant immune responses. In conclusion, DDRs activated basal immune responses to viral pathogens.

Resistance of Bovine Colostrum Exosomes to Bacterial Infection by Regulating Iimmunity in Caenorhabditis elegans Model

  • Minkyoung Kang;Minji Kang;Sangnam Oh
    • Journal of Dairy Science and Biotechnology
    • /
    • v.42 no.2
    • /
    • pp.35-47
    • /
    • 2024
  • Milk exosomes contain several bioactive molecules, including lipids, proteins, and miRNAs, which enhance immune response. This study aimed to assess the resistance effects of bovine colostrum exosomes (BCEs) on pathogenic microbial infections in a Caenorhabditis elegans model. BCEs have been shown to enhance the protective response of C. elegans to pathogenic bacterial infections. Our study revealed that BCE extended the lifespan of worms compared to control OP50 worms. In addition, nematode colostrum exosomes promoted nematode resistance to four pathogenic bacteria and prolonged their lifespan in a killing assay. In contrast, mature milk-derived exosomes (BME) did not affect the resistance and lifespan of nematodes exposed to pathogenic bacteria. BCE exposure extended the lifespan of C. elegans against pathogenic infections by stimulating the innate immune response and increasing antimicrobial protein expression. Using biological process-related gene ontology (GO) enrichment analysis, the significantly upregulated GO terms related to C. elegans immunity in BCE-exposed C. elegans included defense, innate immunity, and immune responses. This study demonstrated that BCE enhanced the host defense of C. elegans to prolong its lifespan, thereby suggesting a new natural product against infection by pathogenic bacteria.

Analysis of Unsteady Combustion Performance in Solid Rocket Motor with Pintle (핀틀을 장착한 고체추진기관의 비정상 연소 성능 분석)

  • Ki, Taeseok;Ha, Dongsung;Jin, Jungkun;Lee, Hosung;Yoon, Hyungull
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.68-75
    • /
    • 2015
  • In this paper, unsteady characteristics of pressure in solid rocket motor were analyzed by using response of pintle actuation, pressure and thrust data from ground test. Pressure and thrust in solid rocket motor can be controlled in real time by varying nozzle throat area with pintle, installed in the valve. Unsteady characteristics of pressure can be observed in this system occurred by various reasons. Two critical reasons, error of pintle actuation and ablation of center tube, are found and effects of each reason can be analyzed individually by re-prediction of pressure with response of pintle actuation and analyzing thrust to pressure ratio.

Botrytis cinerea hypovirulent strain △BcSpd1 induced Panax ginseng defense

  • Shuhan Zhang;Junyou Han;Ning Liu;Jingyuan Sun;Huchen Chen;Jinglin Xia;Huiyan Ju;Shouan Liu
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.773-783
    • /
    • 2023
  • Background: Gray mold, caused by Botrytis cinerea, is one of the major fungal diseases in agriculture. Biological methods are preferred over chemical fungicides to control gray mold since they are less toxic to the environment and could induce the resistance to pathogens in plants. In this work, we try to understand if ginseng defense to B. cinerea could be induced by fungal hypovirulent strain △BcSpd1. BcSpd1 encodes Zn(II)2Cys6 transcription factor which regulates fungal pathogenicity and we recently reported △BcSpd1 mutants reduced fungal virulence. Methods: We performed transcriptomic analysis of the host to investigate the induced defense response of ginseng treated by B. cinerea △BcSpd1. The metabolites in ginseng flavonoids pathway were determined by UPLC-ESI-MS/MS and the antifungal activates were then performed. Results: We found that △BcSpd1 enhanced the ginseng defense response when applied to healthy ginseng leaves and further changed the metabolism of flavonoids. Compared with untreated plants, the application of △BcSpd1 on ginseng leaves significantly increased the accumulation of p-coumaric acid and myricetin, which could inhibit the fungal growth. Conclusion: B. cinerea △BcSpd1 could effectively induce the medicinal plant defense and is referred to as the biological control agent in ginseng disease management.

The Utility of Satellite Sensors of the Missile Defense Systems (미사일 방어 체계의 위성센서 효용성 연구)

  • Park, Chul-Hyun;Kwon, Yang-Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.3
    • /
    • pp.211-222
    • /
    • 2002
  • This paper describes the utility of satellite sensors of the missile defense system using the estimation theory. The inherent flight characteristics of the missiles give the limitations in the response time and the countermeasures. In this point, the early warning and surveillance satellites are important. Using the Extended Kalman Filter, it is analysed LPU and MLU in DSP and SBIRS satellites, and presented the quantitative uncertainties of state estimates of non-rotational DSP compare to the rotating one.

  • PDF

A research on cyber kill chain and TTP by APT attack case study (APT 공격 사례 분석을 통한 사이버 킬체인과 TTP에 대한 연구)

  • Yoon, Youngin;Kim, Jonghwa;Lee, Jaeyeon;Yu, Sukdea;Lee, Sangjin
    • Convergence Security Journal
    • /
    • v.20 no.4
    • /
    • pp.91-101
    • /
    • 2020
  • We analyzed APT attack cases that occurred overseas in the past using a cyber kill chain model and a TTP model. As a result of the analysis, we found that the cyber kill chain model is effective in figuring out the overall outline, but is not suitable for establishing a specific defense strategy, however, TTP model is suitable to have a practical defense system. Based on these analysis results, it is suggested that defense technology development which is based on TTP model to build defense-in-depth system for preparing cyber attacks.

The role of defense-related genes and oxidative burst in the establishment of systemic acquired resistance to Xanthomonas campestris pv. vesicatoria in Capsicum annuum(oral)

  • Lee, S.C.;B.K. Hwang
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.64.1-64
    • /
    • 2003
  • Inoculation of primary pepper leaves with an avirulent strain of Xanthomonas campestris pv. vesicatoria induced systemic acquired resistance (SAR) in secondary leaves. This SAR response was accompanied by the systemic expression of defense-related genes, a systemic microoxidative burst generating H2O2, and the systemic induction of ion-leakage and callose deposition in the non-inoculated, secondary leaves. Some defense-related genes encoding PR-1, chitinase, peroxidase, PR10, thionin, defensin and zinc-finger protein were distiilctly induced in the systemic leaves. The systemically striking accumulation of H$_2$O$_2$and strong increase in peroxidase activity in pepper was suggested to contribute to the triggering of cell death In the systemic micro-HRs, leading to the induction of SAR. Treatment of non-inoculated, secondary leaves with diphenylene iodinium (DPI), an inhibitor of the oxidative burst, substantially reduced the induction of some defense-related genes and subsequently SAR.

  • PDF

Similarities of Tobacco Mosaic Virus-Induced Hypersensitive Cell Death and Copper-Induced Abiotic Cell Death in Tobacco

  • Oh, Sang-Keun;Cheong, Jong-Joo;Ingyu Hwang;Park, Doil
    • The Plant Pathology Journal
    • /
    • v.15 no.1
    • /
    • pp.8-13
    • /
    • 1999
  • Hypersensitive cell death of plants during incompatible plant-pathogen interactions is one of the efficient defense mechanisms of plants against pathogen infections. For better understanding of the molecular mechanisms involved in the plant hypersensitive response (HR), TMV-induced biotic plant cell death and CuSO4-induced abiotic plant cell death were compared in terms of expression patterns of ten different defense-related genes as molecular markers. The genes include five pathogenesis-related protein genes, two plant secondary metabolite-associated genes, two oxidative stress-related genes and one wound-inducible gene isolated from tobacco. Northern blot analyses revealed that a same set of defense-related genes was induced during both biotic and abiotic cell death but with different time and magnitude. The expression of defense-related genes in tobacco plants was temporarily coincided with the time of cell death. However, when suspension cell cultures was used to monitor the expression of defense-related genes, different patterns of the gene expression were detected. This result implies that three are common and, in addition, also different branches of signaling pathways leading to the induced expression of defense-related genes in tobacco during the pathogen- and heavy metal-induced cell death.

  • PDF

Priming of Defense-Related Genes Confers Root-Colonizing Bacilli-Elicited Induced Systemic Resistance in Pepper

  • Yang, Jung-Wook;Yu, Seung-Hun;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.389-399
    • /
    • 2009
  • A group of beneficial plant bacteria has been shown to increase crop growth referring to as plant growth-promoting rhizobacteria (PGPR). PGPR can decrease plant disease directly, through the production of antagonistic compounds, and indirectly, through the elicitation of a plant defense response termed induced systemic resistance (ISR). While the mechanism of PGPR-elicited ISR has been studied extensively in the model plant Arabidopsis, it is less well characterized in crop plants such as pepper. In an effort to better understand the mechanism of ISR in crop plants, we investigated the induction of ISR by Bacillus cereus strain BS107 against Xanthomonas axonopodis pv. vesicatoria in pepper leaves. We focused on the priming effect of B. cereus strain BS107 on plant defense genes as an ISR mechanism. Of ten known pepper defense genes that were previously reported to be involved in pathogen defense signaling, the expression of Capsicum annum pathogenesis-protein 4 and CaPR1 was systemically primed by the application of strain BS107 onto pepper roots confirming by quantitative-reverse transcriptase PCR. Our results provide novel genetic evidence of the priming effect of a rhizobacterium on the expression of pepper defense genes involved in ISR.

Design and Implementation of Cyber Range for Cyber Defense Exercise Based on Cyber Crisis Alert (사이버위기 경보 기반 사이버 방어 훈련장 설계 및 구축 연구)

  • Choi, Younghan;Jang, Insook;Whoang, Inteck;Kim, Taeghyoon;Hong, Soonjwa;Park, Insung;Yang, Jinsoek;Kwon, Yeongjae;Kang, Jungmin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.5
    • /
    • pp.805-821
    • /
    • 2020
  • Cyber defense exercise should require training on the latest cyber attacks and have a similar process to defense cyber attacks. In addition, it is also important to train on cyber resilience that can perform normal tasks or support equivalent tasks regardless of cyber attacks. In this paper, we proposed and developed a cyber range that can strengthen the elements of cyber resilience by performing cyber defense exercise in real time based on the cyber crisis alert issued when a cyber attack occurs in Korea. When BLUE, YELLOW, ORANGE, and RED warnings are issued according to the cyber crisis, our system performs proactive response, real time response, and post response according to the alarm. It can improve trainee's capability to respond to cyber threats by performing cyber defense exercise in a cyber crisis environment similar to the actual situation of Korea.