• Title/Summary/Keyword: Defense Artificial Intelligence

Search Result 128, Processing Time 0.028 seconds

The Intelligent Blockchain for the Protection of Smart Automobile Hacking

  • Kim, Seong-Kyu;Jang, Eun-Sill
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • In this paper, we have recently created self-driving cars and self-parking systems in human-friendly cars that can provide high safety and high convenience functions by recognizing the internal and external situations of automobiles in real time by incorporating next-generation electronics, information communication, and function control technologies. And with the development of connected cars, the ITS (Intelligent Transportation Systems) market is expected to grow rapidly. Intelligent Transportation System (ITS) is an intelligent transportation system that incorporates technologies such as electronics, information, communication, and control into the transportation system, and aims to implement a next-generation transportation system suitable for the information society. By combining the technologies of connected cars and Internet of Things with software features and operating systems, future cars will serve as a service platform to connect the surrounding infrastructure on their own. This study creates a research methodology based on the Enhanced Security Model in Self-Driving Cars model. As for the types of attacks, Availability Attack, Man in the Middle Attack, Imperial Password Use, and Use Inclusive Access Control attack defense methodology are used. Along with the commercialization of 5G, various service models using advanced technologies such as autonomous vehicles, traffic information sharing systems using IoT, and AI-based mobility services are also appearing, and the growth of smart transportation is accelerating. Therefore, research was conducted to defend against hacking based on vulnerabilities of smart cars based on artificial intelligence blockchain.

A Study on Image Labeling Technique for Deep-Learning-Based Multinational Tanks Detection Model

  • Kim, Taehoon;Lim, Dongkyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.58-63
    • /
    • 2022
  • Recently, the improvement of computational processing ability due to the rapid development of computing technology has greatly advanced the field of artificial intelligence, and research to apply it in various domains is active. In particular, in the national defense field, attention is paid to intelligent recognition among machine learning techniques, and efforts are being made to develop object identification and monitoring systems using artificial intelligence. To this end, various image processing technologies and object identification algorithms are applied to create a model that can identify friendly and enemy weapon systems and personnel in real-time. In this paper, we conducted image processing and object identification focused on tanks among various weapon systems. We initially conducted processing the tanks' image using a convolutional neural network, a deep learning technique. The feature map was examined and the important characteristics of the tanks crucial for learning were derived. Then, using YOLOv5 Network, a CNN-based object detection network, a model trained by labeling the entire tank and a model trained by labeling only the turret of the tank were created and the results were compared. The model and labeling technique we proposed in this paper can more accurately identify the type of tank and contribute to the intelligent recognition system to be developed in the future.

MalDC: Malicious Software Detection and Classification using Machine Learning

  • Moon, Jaewoong;Kim, Subin;Park, Jangyong;Lee, Jieun;Kim, Kyungshin;Song, Jaeseung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1466-1488
    • /
    • 2022
  • Recently, the importance and necessity of artificial intelligence (AI), especially machine learning, has been emphasized. In fact, studies are actively underway to solve complex and challenging problems through the use of AI systems, such as intelligent CCTVs, intelligent AI security systems, and AI surgical robots. Information security that involves analysis and response to security vulnerabilities of software is no exception to this and is recognized as one of the fields wherein significant results are expected when AI is applied. This is because the frequency of malware incidents is gradually increasing, and the available security technologies are limited with regard to the use of software security experts or source code analysis tools. We conducted a study on MalDC, a technique that converts malware into images using machine learning, MalDC showed good performance and was able to analyze and classify different types of malware. MalDC applies a preprocessing step to minimize the noise generated in the image conversion process and employs an image augmentation technique to reinforce the insufficient dataset, thus improving the accuracy of the malware classification. To verify the feasibility of our method, we tested the malware classification technique used by MalDC on a dataset provided by Microsoft and malware data collected by the Korea Internet & Security Agency (KISA). Consequently, an accuracy of 97% was achieved.

The Study on CGF Behavior Modeling Methodologies for Defense M&S: Focusing on Survey and Future Direction (국방 M&S의 가상군 행위 모델링 방법론 연구: 조사와 미래방향을 중심으로)

  • Cho, Namsuk;Moon, Hoseok;Pyun, Jai Jeong
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.35-47
    • /
    • 2020
  • Immediate and serious attention on CGF(computer generated forces) behavior modeling for defense M&S (modeling & simulation) is required in response to the reduction in the number of troops and development of 4th industrial technologies. It is crucial for both military person and engineer to understand such technologies. The research aims to provide guidelines for establishment of research direction on CGF behavior modeling. We investigate traditional and/or novel methodologies such as rule-based, agent-based, and learning-based method. Discussions on future direction of applicable area and strategies are followed. We expect that the research plays a key role for understanding CGF behavior modeling.

Malwares Attack Detection Using Ensemble Deep Restricted Boltzmann Machine

  • K. Janani;R. Gunasundari
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.64-72
    • /
    • 2024
  • In recent times cyber attackers can use Artificial Intelligence (AI) to boost the sophistication and scope of attacks. On the defense side, AI is used to enhance defense plans, to boost the robustness, flexibility, and efficiency of defense systems, which means adapting to environmental changes to reduce impacts. With increased developments in the field of information and communication technologies, various exploits occur as a danger sign to cyber security and these exploitations are changing rapidly. Cyber criminals use new, sophisticated tactics to boost their attack speed and size. Consequently, there is a need for more flexible, adaptable and strong cyber defense systems that can identify a wide range of threats in real-time. In recent years, the adoption of AI approaches has increased and maintained a vital role in the detection and prevention of cyber threats. In this paper, an Ensemble Deep Restricted Boltzmann Machine (EDRBM) is developed for the classification of cybersecurity threats in case of a large-scale network environment. The EDRBM acts as a classification model that enables the classification of malicious flowsets from the largescale network. The simulation is conducted to test the efficacy of the proposed EDRBM under various malware attacks. The simulation results show that the proposed method achieves higher classification rate in classifying the malware in the flowsets i.e., malicious flowsets than other methods.

FLOCKING AND PATTERN MOTION IN A MODIFIED CUCKER-SMALE MODEL

  • Li, Xiang;Liu, Yicheng;Wu, Jun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1327-1339
    • /
    • 2016
  • Self-organizing systems arise very naturally in artificial intelligence, and in physical, biological and social sciences. In this paper, we modify the classic Cucker-Smale model at both microscopic and macroscopic levels by taking the target motion pattern driving forces into consideration. Such target motion pattern driving force functions are properly defined for the line-shaped motion pattern and the ball-shaped motion pattern. For the modified Cucker-Smale model with the prescribed line-shaped motion pattern, we have analytically shown that there is a flocking pattern with an asymptotic flocking velocity. This is illustrated by numerical simulations using both symmetric and non-symmetric pairwise influence functions. For the modified Cucker-Smale model with the prescribed ball-shaped motion pattern, our simulations suggest that the solution also converges to the prescribed motion pattern.

AI and Network Trends for Manned-Unmanned Teaming (유‧무인 복합을 위한 AI와 네트워크 동향)

  • J.K. Choi;Y.T. Lee;D.W. Kang;J.K. Lee;H.S. Park
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.4
    • /
    • pp.21-31
    • /
    • 2024
  • Major global powers are investing heavily in artificial intelligence (AI) and hyper-connected networks, demonstrating their crucial role in future warfare. To advance and utilize AI in national defense, it is essential to have policy support at the governmental or national level. This includes establishing a research and development infrastructure, creating a common development environment, and fostering AI expertise through education and training programs. To achieve advancements in hyper-connected networks, it is essential to establish a foundation for a robust and resilient infrastructure by comprehensively building integrated satellite, aerial, and ground networks, along with developing 5G & edge computing and low-orbit satellite communication technologies. This multi-faceted approach will ensure the successful integration of AI and hyper-connected networks, strengthening national defense and positioning nations at the forefront of technological advancements in warfare.

TPM-Based Anti-Tampering Solutions to Protect Weapon Systems Technologies (TPM 기반 안티탬퍼링 솔루션을 통한 무기체계 기술 보호)

  • J.H. Lee;D.H. Kim;H.S. Lee;J.H. Han;Y.S. Kim;C. Ryu;Y.S. Choi;Y.K. Lee;J.N. Kim
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.5
    • /
    • pp.49-60
    • /
    • 2024
  • Protecting weapon system technologies is essential for national security. Advancements in artificial intelligence and South Korea's growing role in the global defense market underscore the importance of anti-tampering technologies. TPM-based anti-tampering ensures the integrity and confidentiality of weapon systems. This paper analyzes the concept of anti-tampering and the current standards and technologies related to TCG's TPM/TSS. With mandatory integration requirements for exported weapon systems, TPM-based anti-tampering solutions provide cost-effective, high-level security while effectively safeguarding K-Defense technologies.

Development of Machine Learning Ensemble Model using Artificial Intelligence (인공지능을 활용한 기계학습 앙상블 모델 개발)

  • Lee, K.W.;Won, Y.J.;Song, Y.B.;Cho, K.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.5
    • /
    • pp.211-217
    • /
    • 2021
  • To predict mechanical properties of secondary hardening martensitic steels, a machine learning ensemble model was established. Based on ANN(Artificial Neural Network) architecture, some kinds of methods was considered to optimize the model. In particular, interaction features, which can reflect interactions between chemical compositions and processing conditions of real alloy system, was considered by means of feature engineering, and then K-Fold cross validation coupled with bagging ensemble were investigated to reduce R2_score and a factor indicating average learning errors owing to biased experimental database.

Selection Criteria of Target Systems for Quality Management of National Defense Data (국방데이터 품질관리를 위한 대상 체계 선정 기준)

  • Jiseong Son;Yun-Young Hwang
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.155-160
    • /
    • 2023
  • In principle, data from all databases and systems managed by the Ministry of Defense or public institutions must be guaranteed to have a certain level of quality or higher, but since most information systems are built and operated, data quality management for all systems is realistically limited. Most defense data is not disclosed due to the nature of the work, and many systems are strategically developed or integrated and managed by the military depending on the need and importance of the work. In addition, many types of data that require data quality management are being accumulated and generated, such as sensor data generated from weapon systems, unstructured data, and artificial intelligence learning data. However, there is no data quality management guide for defense data and a guide for selecting quality control targets, and the selection criteria are ambiguous to select databases and systems for quality control of defense data according to the standards of the public data quality management manual. Depends on the person in charge. Therefore, this paper proposes criteria for selecting a target system for quality control of defense data, and describes the relationship between the proposed selection criteria and the selection criteria in the existing manual.